19.若平面α的一個法向量為$\overrightarrow{n}$=(0,2,2),A(1,0,2),B(0,-1,4),A∉α,B∈α,則點(diǎn)A到平面
α的距離為( 。
A.1B.2C.$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

分析 點(diǎn)A到平面α的距離為d=$\frac{|\overrightarrow{n}•\overrightarrow{BA}|}{|\overrightarrow{n}|}$,由此能求出結(jié)果.

解答 解:∵平面α的一個法向量為$\overrightarrow{n}$=(0,2,2),
A(1,0,2),B(0,-1,4),A∉α,B∈α,
∴$\overrightarrow{BA}$=(1,1,-2),
∴點(diǎn)A到平面α的距離為d=$\frac{|\overrightarrow{n}•\overrightarrow{BA}|}{|\overrightarrow{n}|}$=$\frac{|0+2-4|}{\sqrt{0+4+4}}$=$\frac{\sqrt{2}}{2}$.
故選:D.

點(diǎn)評 本題考查點(diǎn)到平面的距離的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意點(diǎn)到直線的距離公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.$\sqrt{(a-b)^{6}}$(a<b)=(b-a)3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)扇形的半徑長為2cm,面積為4cm2,則扇形的圓心角的弧度數(shù)是( 。
A.1B.2C.πD.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.甲乙二人玩游戲,甲想一數(shù)字記為a,乙猜甲剛才想的數(shù)字,把乙猜出的數(shù)字記為b,且a,b∈{1,2,3},若|a-b|≤1,則稱甲乙心有靈犀,則他們心有靈犀的概率為$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A,B,C三點(diǎn)滿足$\overrightarrow{OC}$=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{OB}$.
(Ⅰ)求證:A,B,C三點(diǎn)共線;
(Ⅱ)已知A(1,cosx),B(1+sinx,cosx),x∈[0,$\frac{π}{2}$],f(x)=$\overrightarrow{OA}$•$\overrightarrow{OC}$-(2m2+$\frac{2}{3}$)•|$\overrightarrow{AB}$|的最小值為$\frac{1}{2}$,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知梯形CEPD如圖(1)所示,其中PD=8,CE=6,A為線段PD的中點(diǎn),四邊形ABCD為正方形,現(xiàn)沿AB進(jìn)行折疊,使得平面PABE⊥平面ABCD,得到如圖(2)所示的幾何體.已知當(dāng)點(diǎn)F滿足$\overrightarrow{AF}$=$λ\overrightarrow{AB}$(0<λ<1)時,平面DEF⊥平面PCE,則λ的值為( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ax2+xlnx+x.
(1)若a=1,求函數(shù)f(x)在(1,f(1))處的切線方程;
(2))若a=-e,證明:方程$|{f(x)}|-lnx=\frac{1}{2}x$無解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某高校在2015年的自主招生考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,按成績分組:第1組[160,165),第2組[165,170),第3組[170,175),第4組[175,180),第5組[180,185)得到的頻率分布直方圖如圖所示.

(1)分別求出第3、4、5組的頻率;
(2)為了能選拔出最優(yōu)秀的學(xué)生,該校決定在筆試成績高的第3、4、5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
(3)計算這100名學(xué)生筆試成績的平均值,中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若點(diǎn)(1,2)和點(diǎn)(-1,3)在直線x+ay-1=0的兩側(cè),則實(shí)數(shù)a的取值范圍是$(0,\frac{2}{3})$.

查看答案和解析>>

同步練習(xí)冊答案