【題目】已知函數(shù)f(x)= 的定義域?yàn)锳.
(1)求A;
(2)已知k>0,集合B={x| },且A∩B≠,求實(shí)數(shù)k的取值范圍.

【答案】
(1)解:由題意,得 ,解得﹣3<x<0,或2<x<3,

∴函數(shù)的定義域?yàn)锳={x|﹣3<x<0或2<x<3}.


(2)解:∵x2﹣2x+1﹣k2≥0,

∴當(dāng)k>0時(shí),x≤1﹣k,或x≥1+k

又x>1,∴x≥1+k,

∴B={x|x≥1+k},

又∵A∩B≠,

,∴0<k<2,

∴實(shí)數(shù)k的取值范圍為0<k<2.


【解析】(1)由題意,得 ,解得即可,(2)求出集合B,再根據(jù)A∩B≠,即可求出a的范圍.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用集合的交集運(yùn)算和函數(shù)的定義域及其求法,掌握交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立;求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開(kāi)方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知隨機(jī)變量ξ的概率分布如下,則P(ξ=10)=( )

ξ

1

2

3

4

5

6

7

8

9

10

P

m


A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某特色餐館開(kāi)通了美團(tuán)外賣(mài)服務(wù),在一周內(nèi)的某特色菜外賣(mài)份數(shù)(份)與收入(元)之間有如下的對(duì)應(yīng)數(shù)據(jù):

外賣(mài)份數(shù)(份)

2

4

5

6

8

收入(元)

30

40

60

50

70

(1)畫(huà)出散點(diǎn)圖;

(2)求回歸直線(xiàn)方程;

(3)據(jù)此估計(jì)外賣(mài)份數(shù)為12份時(shí),收入為多少元.

注:①參考公式:線(xiàn)性回歸方程系數(shù)公式,

②參考數(shù)據(jù): ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1(a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , 直線(xiàn)l經(jīng)過(guò)F2且交橢圓C于A(yíng),B兩點(diǎn)(如圖),△ABF1的周長(zhǎng)為4 ,原點(diǎn)O到直線(xiàn)l的最大距離為1.

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)F2作弦AB的垂線(xiàn)交橢圓C于M,N兩點(diǎn),求四邊形AMBN面積最小時(shí)直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)圓滿(mǎn)足:(1)截軸所得弦長(zhǎng)為2;(2)被軸分成兩段圓弧,其弧長(zhǎng)的比為.在滿(mǎn)足條件(1)、(2)的所有圓中,圓心到直線(xiàn)的距離最小的圓的方程為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖四邊形ABCD為梯形,AD∥BC,∠ABC=90°,AD=2,AB=4,BC=5,圖中陰影部分(梯形剪去一個(gè)扇形)繞AB旋轉(zhuǎn)一周形成一個(gè)旋轉(zhuǎn)體.
(1)求該旋轉(zhuǎn)體的表面積;
(2)求該旋轉(zhuǎn)體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥底面ABC,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D是AB的中點(diǎn).

(1)求證:AC1∥平面CDB1
(2)求證:AC⊥BC1
(3)求直線(xiàn)AB1與平面BB1C1C所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】交強(qiáng)險(xiǎn)是車(chē)主必須為機(jī)動(dòng)車(chē)購(gòu)買(mǎi)的險(xiǎn)種,若普通6座以下私家車(chē)投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車(chē)輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表

浮動(dòng)因素

浮動(dòng)比率

上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮10%

上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮20%

上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮10%

上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車(chē)的投保情況,隨機(jī)抽取了60輛車(chē)齡已滿(mǎn)三年的該品牌同型號(hào)私家車(chē)的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類(lèi)型

數(shù)量

10

5

5

20

15

5

以這60輛該品牌車(chē)的投保類(lèi)型的頻率代替一輛車(chē)投保類(lèi)型的概率,完成下列問(wèn)題:

求一輛普通6座以下私家車(chē)(車(chē)險(xiǎn)已滿(mǎn)三年)在下一年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的頻率;

某二手車(chē)銷(xiāo)售商專(zhuān)門(mén)銷(xiāo)售這一品牌的二手車(chē),且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車(chē)輛記為事故車(chē).假設(shè)購(gòu)進(jìn)一輛事故車(chē)虧損5000元,一輛非事故車(chē)盈利10000元.且各種投保類(lèi)型車(chē)的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問(wèn)題:

①若該銷(xiāo)售商購(gòu)進(jìn)三輛(車(chē)齡已滿(mǎn)三年)該品牌二手車(chē),某顧客欲在店內(nèi)隨機(jī)挑選兩輛車(chē),求這兩輛車(chē)恰好有一輛為事故車(chē)的概率;

②若該銷(xiāo)售商一次購(gòu)進(jìn)120輛(車(chē)齡已滿(mǎn)三年)該品牌二手車(chē),求一輛車(chē)盈利的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若a,b是函數(shù)f(x)=x2﹣px+q(p>0,q>0)的兩個(gè)不同的零點(diǎn),且a,b,﹣2這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則p+q的值等于

查看答案和解析>>

同步練習(xí)冊(cè)答案