精英家教網 > 高中數學 > 題目詳情
6、若關于x的方程x2+mx+1=0有兩個不相等的實數根,則實數m的取值范圍是(  )
分析:利用題中條件:“關于x的方程x2+mx+1=0有兩個不相等的實數根”由韋達定理的出m的關系式,解不等式即可.
解答:解:∵關于x的方程x2+mx+1=0有兩個不相等的實數根,
∴△>0,
即:m2-4>0,
解得:m∈(-∞,-2)∪(2,+∞).
故選C.
點評:本題考查一元二次方程的根的判別式與根的關系,屬于基本運算的考查.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

△ABC中三個內角為A、B、C,若關于x的方程x2-xcosAcosB-cos2
C
2
=0有一根為1,則△ABC一定是( 。
A、直角三角形
B、等腰三角形
C、銳角三角形
D、鈍角三角形

查看答案和解析>>

科目:高中數學 來源: 題型:

若關于x的方程x2+ax-1=0在(-1,2)內恰好有一個解,則a的范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

7、若關于x的方程x2+(2-m2)x+2m=0的兩根一個比1大一個比1小,則m的范圍是
m>3或m<-1

查看答案和解析>>

科目:高中數學 來源: 題型:

若關于x的方程x2+2(a-1)x+2a+6=0有一正一負兩實數根,則實數a的取值范圍
a<-3
a<-3

查看答案和解析>>

科目:高中數學 來源: 題型:

若關于x的方程x2-4|x|+5=m有四個不同的實數解,則實數m的取值范圍是(  )

查看答案和解析>>

同步練習冊答案