【題目】某市公租房的房源位于甲、乙兩個片區(qū),設每位申請人只申請其中一個片區(qū)的房源,且申請其中任一個片區(qū)的房源是等可能的,現(xiàn)該市有3位申請人在申請公租房:

1)用合適的符號寫出樣本空間;

2)求沒有人申請甲片區(qū)房源的概率;

3)求每個片區(qū)的房源都有人申請的概率

【答案】1)見解析;(2;(3

【解析】

1)利用列舉法,按照一定的次序不重不漏一一列舉即可.

2)由(1)找出沒有人申請甲片區(qū)房源的基本事件個數(shù),按照古典概型的概率求法公式即可求解.

3)由(1)設每個片區(qū)的房源都有人申請的基本事件為B,可先找只選一片房源的基本事件,然會按對立事件的概率求法求解即可.

解:(1)樣本空間為{(甲,甲,甲),(甲,甲,乙),(甲,乙,甲),(乙,甲,甲),(甲,乙,乙),(乙,甲,乙),(乙,乙,甲),(乙,乙,乙)}.

2)由(1)知基本事件總數(shù).

已事件沒有人申請甲片區(qū)房源A

A={(乙,乙,乙)},所以.

3)記事件每個片區(qū)的房源都有人申請B

={(甲,甲,甲),(乙,乙,乙)},所以,

于是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2) 若函數(shù)有兩個零點, ,且,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在等比數(shù)列{an}中,=2,,=128,數(shù)列{bn}滿足b1=1,b2=2,且{}為等差數(shù)列.

(1)求數(shù)列{an}和{bn}的通項公式;

(2)求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知常數(shù),在數(shù)列中,首項,是其前項和,且,.

1)設,證明數(shù)列是等比數(shù)列,并求出的通項公式;

2)設,,證明數(shù)列是等差數(shù)列,并求出的通項公式;

3)若當且僅當時,數(shù)列取到最小值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,橢圓C:的焦點為F1(–1、0),

F21,0).過F2x軸的垂線l,在x軸的上方,l與圓F2:交于點A,與橢圓C交于點D.連結AF1并延長交圓F2于點B,連結BF2交橢圓C于點E,連結DF1.已知DF1=

1)求橢圓C的標準方程;

2)求點E的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在人群流量較大的街道,有一中年人吆喝送錢,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質(zhì)地完成相同),旁邊立著一塊小黑板寫道:

摸球方法:從袋中隨機摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢.

1)摸出的3個球為白球的概率是多少?

2)摸出的3個球為2個黃球1個白球的概率是多少?

3)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(I)若,函數(shù)的極大值為,求實數(shù)的值;

(Ⅱ)若對任意的 上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在銳角中, 、分別為角、、所對的邊,且

)確定角的大。

)若,且的面積為,求的值.

【答案】;(

【解析】試題分析:(1由正弦定理可知, ,所以;(2)由題意, , ,得到

試題解析:

,

,∴

, ,

,

型】解答
束】
17

【題目】已知等差數(shù)列滿足:,.的前n項和為.

)求 ;

)若 ,),求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形的邊長為,已知,將沿邊折起,折起后點在平面上的射影為點,則翻折后的幾何體中有如下描述:

所成角的正切值是;

;

④平面平面;

⑤直線與平面所成角為30°.

其中正確的有________.(填寫你認為正確的序號)

查看答案和解析>>

同步練習冊答案