過點(diǎn)(3,4)且與兩點(diǎn)(4,-2)、(-2,2)等距離的直線方程是

[  ]

A.2x+3y-18=0和2x+y-2=0

B.3x-2y+18=0和x+2y+2=0

C.2x+3y-18=0和2x-y-2=0

D.3x-2y+18=0和2x-y-2=0

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知圓C1:(x+3)2+y2=4和圓C2:(x-4)2+(y-4)2=4.
(1)若直線l過點(diǎn)A(4,-1),且被圓C1截得的弦長(zhǎng)為2
3
,求直線l的方程;
(2)是否存在一個(gè)定點(diǎn)P,使過P點(diǎn)有無數(shù)條直線l與圓C1和圓C2都相交,且l被兩圓截得的弦長(zhǎng)相等,若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知直線l的斜率為k且過點(diǎn)Q(-3,0),拋物線C:y2=16x,直線與拋物線l有兩個(gè)不同的交點(diǎn),F(xiàn)是拋物線的焦點(diǎn),點(diǎn)A(4,2)為拋物線內(nèi)一定點(diǎn),點(diǎn)P為拋物線上一動(dòng)點(diǎn).
(1)求|PA|+|PF|的最小值;
(2)求k的取值范圍;
(3)若O為坐標(biāo)原點(diǎn),問是否存在點(diǎn)M,使過點(diǎn)M的動(dòng)直線與拋物線交于B,C兩點(diǎn),且以BC為直徑的圓恰過坐標(biāo)原點(diǎn),若存在,求出動(dòng)點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求過直線x+y+4=0與x-y+2=0的交點(diǎn),且平行于直線 x-2y=0的直線方程.
(2)設(shè)直線4x+3y+1=0和圓x2+y2-2x-3=0相交于點(diǎn)A、B,求弦AB的長(zhǎng)及其垂直平分線的方程.
(3)過點(diǎn)P(3,0)有一條直線l,它夾在兩條直線l1:2x-y-2=0與l2:x+y+3=0之間的線段恰被P點(diǎn)平分,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1:x2+y2=1,圓C2:(x-4)2+y2=4
(1)判斷兩圓位置關(guān)系;
(2)若直線l為過點(diǎn)P(3,0)且與圓C1相切的直線,求直線l的方程;
(3)在x軸上是否存在一定點(diǎn)Q(m,0),使得過Q點(diǎn)且與兩圓都相交的直線被兩圓所截得的弦長(zhǎng)始終相等?若存在,求出Q點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線過點(diǎn)P(-2,3),且與兩坐標(biāo)軸圍成的三角形面積為4,求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案