據(jù)報道,全國很多省市將英語考試作為高考改革的重點,一時間“英語考試該如何改”引起廣泛關(guān)注,為了解某地區(qū)學生和包括老師、家長在內(nèi)的社會人士對高考英語改革的看法,某媒體在該地區(qū)選擇了3600人調(diào)查,就是否“取消英語聽力”的問題,調(diào)查統(tǒng)計的結(jié)果如下表:
態(tài)度
調(diào)查人群
應該取消應該保留無所謂
在校學生2100人120人y人
社會人士600人x人z人
已知在全體樣本中隨機抽取1人,抽到持“應該保留”態(tài)度的人的概率為0.05.
(Ⅰ)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取360人進行問卷訪談,問應在持“無所謂”態(tài)度的人中抽取多少人?
(Ⅱ)已知y≥657,z≥55,若所選擇的在校學生的人數(shù)低于被調(diào)查人群總數(shù)的80%,則認為本次調(diào)查“失效”,求本次調(diào)查“失效”的概率.
考點:列舉法計算基本事件數(shù)及事件發(fā)生的概率,分層抽樣方法
專題:概率與統(tǒng)計
分析:(Ⅰ)先由抽到持“應該保留”態(tài)度的人的概率為0.05,由已知條件求出x,再求出持“無所謂”態(tài)度的人數(shù),由此利用抽樣比能求出應在“無所謂”態(tài)度抽取的人數(shù).
(Ⅱ)由y+z=720,y≥657,z≥55,用列舉法求得滿足條件的(y,z)有9種,若調(diào)查失效,則2100+120+y<3600×0.8,解得y<660,列舉求得調(diào)查失效的情況共3種,由此求得調(diào)查失效的概率.
解答: 解:(I)∵抽到持“應該保留”態(tài)度的人的概率為0.05,
120+x
3600
=0.05,解得x=60.  
∴持“無所謂”態(tài)度的人數(shù)共有3600-2100-120-600-60=720. 
∴應在“無所謂”態(tài)度抽取720×
360
3600
=72人. )
(Ⅱ)∵y+z=720,y≥657,z≥55,故滿足條件的(y,z)有:
(657,63),(658,62),(659,61),(660,60),(661,59),(662,58),(663,57),(664,56),(665,55)共9種. 
記本次調(diào)查“失效”為事件A,若調(diào)查失效,則2100+120+y<3600×0.8,解得y<660.
∴事件A包含:(657,63),(658,62),(659,61)共3種.
∴P(A)=
3
9
=
1
3
點評:本題主要考查古典概型及其概率計算公式的應用,列舉法,是解決古典概型問題的一種重要的解題方法.還考查了分層抽樣的定義和方法,屬于基礎題
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

方程
x2
k-3
+
y2
2-k
=1
表示焦點在y軸的雙曲線,則k的取值范圍是( 。
A、k<3B、k<2
C、2<k<3D、k>2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C的方程為
x2
a2
-
y2
b2
=1(a,b>0),其離心率為e,直線l與雙曲線C交于A、B兩點,線段AB中點M在第一象限,并且在拋物線y2=2px(p>0)上,且M到拋物線焦點距離為p,則直線l的斜率為( 。
A、
e2-1
2
B、e 2-1
C、
e2+1
2
D、e 2+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,bcosC+
3
bsinC-a-c=0
(1)求證A,B,C成等差數(shù)列;
(2)若a=2,△ABC的面積為
3
,求b,c;
(3)若a,b,c成等比數(shù)列,求sinAsinC的值;
(4)求sinA+sinC的取值范圍;
(5)若b=
3
,求2a+c的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x∈R,向量
a
=(x,1),
b
=(1,-2),且
a
b
,則|
a
+
b
|=( 。
A、
10
B、
11
C、2
3
D、
13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=ax+1,(a>0且a≠1)
(1)當a=3,x∈[-1,2]時,求函數(shù)f(x)的值域;
(2)求不等式f(x)≥1的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖為函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的圖象.
(1)確定它的解析式;
(2)寫出它的對稱軸方程及對稱中心.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,曲線C1:ρcosθ=
2
與曲線C2:ρ2cos2θ=1相交于A,B兩點,則|AB|=
 

查看答案和解析>>

同步練習冊答案