如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A為橢圓E:+=1 (a>b>0)的左頂點(diǎn),B,C在橢圓E上,若四邊形OABC為平行四邊形,且∠OAB=30°,則橢圓E的離心率等于   
【答案】分析:首先利用橢圓的對(duì)稱性和OABC為平行四邊形,可以得出B、C兩點(diǎn)是關(guān)于Y軸對(duì)稱,進(jìn)而得到BC=OA=a;設(shè)B(-,y)C(,y),從而求出|y|,然后由∠OAB=∠COD=30°,利用tan30°=b/=,求得a=3b,最后根據(jù)a2=c2+b2得出離心率.
解答:解:∵AO是與X軸重合的,且四邊形OABC為平行四邊形
∴BC∥OA,
B、C兩點(diǎn)的縱坐標(biāo)相等,
B、C的橫坐標(biāo)互為相反數(shù)
∴B、C兩點(diǎn)是關(guān)于Y軸對(duì)稱的.
由題知:OA=a
四邊形OABC為平行四邊形,所以BC=OA=a
可設(shè)B(-,y)C(,y)
代入橢圓方程解得:|y|=
設(shè)D為橢圓的右頂點(diǎn),因?yàn)椤螼AB=30°,四邊形OABC為平行四邊形
所以∠COD=30°
對(duì)C點(diǎn):tan30°=b/=
解得:a=3b
根據(jù):a2=c2+b2
得:a2=c2+
e2=
e=
故答案為:
點(diǎn)評(píng):本題考查了橢圓的對(duì)稱性以及簡單性質(zhì),由橢圓的對(duì)稱性求出B、C兩點(diǎn)的縱坐標(biāo)進(jìn)而得到a=3b是解題的關(guān)鍵,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△OAB中,點(diǎn)P是線段OB及線段AB延長線所圍成的陰影區(qū)域(含邊界)的任意一點(diǎn),且
OP
=x
OA
+y
OB
則在直角坐標(biāo)平面內(nèi),實(shí)數(shù)對(duì)(x,y)所示的區(qū)域在直線y=4的下側(cè)部分的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1、如圖,在直角坐標(biāo)平面內(nèi)有一個(gè)邊長為a,中心在原點(diǎn)O的正六邊形ABCDEF,AB∥Ox.直線L:y=kx+t(k為常數(shù))與正六邊形交于M、N兩點(diǎn),記△OMN的面積為S,則函數(shù)S=f(t)的奇偶性為
偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)平面內(nèi)有一個(gè)邊長為a、中心在原點(diǎn)O的正六邊形ABCDEF,AB∥Ox.直線L:y=kx+t(k為常數(shù))與正六邊形交于M、N兩點(diǎn),記△OMN的面積為S,則函數(shù)S=f(t)的奇偶性為(  )
A、偶函數(shù)B、奇函數(shù)C、不是奇函數(shù),也不是偶函數(shù)D、奇偶性與k有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•海珠區(qū)一模)如圖,在直角坐標(biāo)平面內(nèi),射線OT落在60°的終邊上,任作一條射線OA,OA落在∠xOT內(nèi)的概率是
1
6
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,一定長m的線段,其端點(diǎn)A、B分別在x軸、y軸上滑動(dòng),設(shè)點(diǎn)M滿足(λ是大于0,且不等于1的常數(shù)).

試問:是否存在定點(diǎn)E、F,使|ME|、|MB|、|MF|成等差數(shù)列?若存在,求出E、F的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案