如果函數(shù)f(x)滿(mǎn)足:對(duì)任意實(shí)數(shù)a,b,都有f(a+b)=f(a)f(b),且f(1)=2,則
f(2)
f(1)
+
f(3)
f(2)
+
f(4)
f(3)
+
f(5)
f(4)
+…+
f(2011)
f(2010)
=
 
考點(diǎn):抽象函數(shù)及其應(yīng)用
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:先有f(a+b)=f(a)f(b),且f(1)=2,得到 
f(a+1)
f(a)
=2,再把所求結(jié)論代入即可求出結(jié)果.
解答: 解:因?yàn)閒(a+b)=f(a)f(b),且f(1)=2,
所以f(a+1)=f(a)f(1)=2f(a),
故有
f(a+1)
f(a)
=2.
f(2)
f(1)
+
f(3)
f(2)
+
f(4)
f(3)
+
f(5)
f(4)
+…+
f(2011)
f(2010)
=2+2+2+…+2=2010×2=4020.
故答案為:4020.
點(diǎn)評(píng):本題主要考查抽象函數(shù)及其應(yīng)用.抽象函數(shù)是相對(duì)于給出具體解析式的函數(shù)來(lái)說(shuō)的,它雖然沒(méi)有具體的表達(dá)式,但是有一定的對(duì)應(yīng)法則,滿(mǎn)足一定的性質(zhì),這種對(duì)應(yīng)法則及函數(shù)的相應(yīng)的性質(zhì)是解決問(wèn)題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x|x是奇數(shù)},P={x∈R|x=4n±1,n∈Z},則集合M與P的關(guān)系是( 。
A、M=PB、M∈P
C、M?PD、M⊆P

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)i是虛數(shù)單位,則i3+
2i
1-i
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了解300名學(xué)生的視力情況,采用系統(tǒng)抽樣的方法從中抽取容量為20的樣本,則分段的間隔為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

隨機(jī)地從甲乙兩苗圃各抽取10株某種樹(shù)苗,測(cè)量它們的株高(單位:cm),獲得株高數(shù)據(jù)的莖葉圖如圖.
(1)根據(jù)莖葉圖判斷哪個(gè)苗圃的平均株高較高;
(2)現(xiàn)從乙苗圃株高不低于173cm的樹(shù)苗中隨機(jī)抽取兩株,求株高為176cm的樹(shù)苗被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正項(xiàng)等比數(shù)列{an}中,已知a1<a2015=1,若集A={t|(a1-
1
a1
)+(a2-
1
a2
)+…+(at-
1
at
)≤0,t∈N*},則A中元素個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合A={x|0<2x-1<3},B={x|-1<1og 
1
2
x<0},則A∩(∁RB)=(  )
A、(0,1]
B、(1,2)
C、(-∞,0)∪(2,+∞)
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

y=
x2+x+1
和y=2-
-x2+4x
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列1,3+5,7+9+11,13+15+17+19,…,則第n式中第一個(gè)數(shù)字為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案