(12分)已知如圖:平行四邊形ABCD中,,正方形ADEF所在平面與平面ABCD垂直,G,H分別是DF,BE的中點.
(1)求證:GH∥平面CDE;
(2)若,求四棱錐F-ABCD的體積.
(1)見解析;(2)=。
【解析】
試題分析:(1)證明GH∥平面CDE,利用線面平行的判定定理,只需證明HG∥CD;
(2)證明FA⊥平面ABCD,求出SABCD,即可求得四棱錐F-ABCD的體積.
考點:本試題主要考查了線面平行,考查四棱錐的體積,屬于中檔題
點評:解決該試題的關鍵是正確運用線面平行的判定。
解:∵, ∴且
∴四邊形EFBC是平行四邊形 ∴H為FC的中點--------2分
又∵G是FD的中點
∴----------------------------------------4分
∵平面CDE,平面CDE
∴GH∥平面CDE --------------------------------------------------6分
(2)∵平面ADEF⊥平面ABCD,交線為AD
且FA⊥AD,
∴FA⊥平面ABCD. --------------------------------------------8
∵, ∴ 又∵ ,
∴BD⊥CD----------------------------------------------------------10分
∴ =
∴ =---------------------12分
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆河北省唐山市高三上學期期中考試理科數(shù)學試卷(解析版) 題型:解答題
已知如圖,平行四邊形中,,,,正方形所在平面與平面垂直,分別是的中點。
⑴求證:平面;
⑵求平面與平面所成的二面角的正弦值。
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東省高三上學期摸底考試文科數(shù)學 題型:解答題
(本題滿分14分)已知如圖:平行四邊形ABCD中,,正方形ADEF所在平面與平面ABCD垂直,G,H分別是DF,BE的中點.
(1)求證:GH∥平面CDE;
(2)若,求四棱錐F-ABCD的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com