如圖,已知在三角形ABC中,AB=3,AC=4,BC=5.
(1)求向量
AB
+
AC
+
BC
的模;
(2)若長(zhǎng)為10的線段PQ以點(diǎn)A為中點(diǎn),問
PQ
BC
的夾角θ取何值時(shí)
BP
CQ
的值最大?并求這個(gè)最大值.
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:(1)利用向量的數(shù)量積性質(zhì)即可得出;
(2)利用向量的三角形法則和數(shù)量積的性質(zhì)即可得出.
解答: 解:(1)|
AB
+
AC
+
BC
|=
(
AB
+
AC
+
BC
)
2

=
AB
2
+
AC
2
+
BC
2
+2
AB
AC
+2
AB
BC
+2
AC
BC

=
32+42+52+2×3×4×0+2×3×5×(-
3
5
)+2×4×5×
4
5

=
9+16+25+0-18+32
=
64
=8

(2)
BP
CQ
=(
BA
+
AP
)•(
CA
+
AQ
)

=
BA
CA
+
BA
AQ
+
AP
CA
+
AP
AQ
=0+
BA
AQ
+
AP
CA
+5×5×cos1800

=
BA
AQ
-
AQ
CA
-25
=
AQ
•(
BA
-
CA
)-25
=
AQ
•(
BA
+
AC
)-25

=
AQ
BC
-25

=
1
2
PQ
BC
-25

=
1
2
|
PQ
|•|
BC
|•cos<
PQ
BC
>-25

=
1
2
×10×5cos<
PQ
BC
>-25

=25cos<
PQ
,
BC

當(dāng)
PQ
BC
>=00
,即θ=00時(shí),(
BP
CQ
)max
=25.
點(diǎn)評(píng):本題考查了向量的三角形法則和數(shù)量積的性質(zhì),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=log2(x-2),若實(shí)數(shù)m,n滿足f(m)+f(2n)=3,則m+n的最小值是(  )
A、7B、5C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)椋?,+∞),當(dāng)x>1時(shí),f(x)>0,且對(duì)于任意的x,y∈(0,+∞),恒有f(xy)=f(x)+f(y)成立.
(Ⅰ)求f(1);
(Ⅱ)證明:函數(shù)f(x)在(0,+∞)上單調(diào)遞增;
(Ⅲ)當(dāng)f(2)=1時(shí),
①解不等式f(x)+f(x-3)≤2;
②求函數(shù)f(x)在[
2
,4]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求與曲線y=
3x2
在點(diǎn)P(8,4)處的切線垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)的周期為π,其最高點(diǎn)的坐標(biāo)為(
π
6
,1)
(1)求φ和ω的值
(2)求f(x)的單調(diào)增區(qū)間
(3)當(dāng)x∈[0,
π
2
]時(shí),求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:曲線
x2
a-1
+
y2
5-a
=1為焦點(diǎn)在x軸上的橢圓;命題q:函數(shù)f(x)=x2-ax+9在R上取值恒為正;若命題“p或q”為真,命題“p且q”為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2-3x-4≥0},B={x|2a≤x≤a+2}.
(Ⅰ)若A∩B≠∅,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=5sinxcosx-5
3
cos2x+
5
2
3
(x∈R),求:
(1)求函數(shù)f(x)的最小正周期
(2)當(dāng)x∈[0,
π
2
]時(shí),函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的直觀圖和三視圖如圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形.點(diǎn)M是棱C1B1上的動(dòng)點(diǎn).
(1)當(dāng)AC1∥平面BMN時(shí),確定點(diǎn)M點(diǎn)在棱C1B1上的位置;
(2)在(1)的條件下,求二面角B1-BM-N的平面角的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案