【題目】2020年春節(jié)前后,一場突如其來的新冠肺炎疫情在全國蔓延.疫情就是命令,防控就是責(zé)任.在黨中央的堅(jiān)強(qiáng)領(lǐng)導(dǎo)和統(tǒng)一指揮下,全國人民眾志成城、團(tuán)結(jié)一心,掀起了一場堅(jiān)決打贏疫情防控阻擊戰(zhàn)的人民戰(zhàn)爭.下側(cè)的圖表展示了2月14日至29日全國新冠肺炎疫情變化情況,根據(jù)該折線圖,下列結(jié)論正確的是( )
A.16天中每日新增確診病例數(shù)量呈下降趨勢且19日的降幅最大
B.16天中每日新增確診病例的中位數(shù)大于新增疑似病例的中位數(shù)
C.16天中新增確診、新增疑似、新增治愈病例的極差均大于
D.19日至29日每日新增治愈病例數(shù)量均大于新增確診與新增疑似病例之和
【答案】C
【解析】
由折線圖分別觀察變化趨勢,估計(jì)中位數(shù),計(jì)算極差,確認(rèn)新增治愈病例數(shù)量與新增確診與新增疑似病例之和,判斷各選項(xiàng)后可得結(jié)論.
從新增確診折線看19日降幅最大,但并不呈下降趨勢,如20日比19日就是上升的,27,28,29三天還是增加的趨勢,A錯;
新增確診病例和新增疑似病例的中位數(shù)在21、22日前后,新增疑似病例的中位數(shù)比新增確診病例的中位數(shù)大,B錯;
三根折線中最大值與最小值的差都大于2000,C正確;
20日新增治愈病例數(shù)量小于新增確診與新增疑似病例之和,D錯誤.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,政府相關(guān)部門引導(dǎo)鄉(xiāng)村發(fā)展旅游的同時(shí),鼓勵農(nóng)戶建設(shè)溫室大棚種植高品質(zhì)農(nóng)作物.為了解某農(nóng)作物的大棚種植面積對種植管理成本的影響,甲,乙兩同學(xué)一起收集6家農(nóng)戶的數(shù)據(jù),進(jìn)行回歸分折,得到兩個(gè)回歸摸型:模型①:,模型②: ,對以上兩個(gè)回歸方程進(jìn)行殘差分析,得到下表:
種植面積(畝) | 2 | 3 | 4 | 5 | 7 | 9 | |
每畝種植管理成本(百元) | 25 | 24 | 21 | 22 | 16 | 14 | |
模型① | 估計(jì)值 | 25.27 | 23.62 | 21.97 | 17.02 | 13.72 | |
殘差 | -0.27 | 0.38 | -0.97 | -1.02 | 0.28 | ||
模型② | 26.84 | 20.17 | 18.83 | 17.31 | 16.46 | ||
-1.84 | 0.83 | 3.17 | -1.31 | -2.46 |
(1)將以上表格補(bǔ)充完整,并根據(jù)殘差平方和判斷哪個(gè)模型擬合效果更好;
(2)視殘差的絕對值超過1.5的數(shù)據(jù)視為異常數(shù)據(jù),針對(1)中擬合效果較好的模型,剔除異常數(shù)據(jù)后,重新求回歸方程.
附:,;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的最大值;
(2)令其圖象上任意一點(diǎn)處切線的斜率恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng),,方程有唯一實(shí)數(shù)解,求正數(shù)的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐C﹣ABNM中,四邊形ABNM的邊長均為2,△ABC為正三角形,MB,MB⊥NC,E,F分別為MN,AC中點(diǎn).
(Ⅰ)證明:MB⊥AC;
(Ⅱ)求直線EF與平面MBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在疫情這一特殊時(shí)期,教育行政部門部署了“停課不停學(xué)”的行動,全力幫助學(xué)生在線學(xué)習(xí).復(fù)課后進(jìn)行了摸底考試,某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生這次摸底考試的數(shù)學(xué)成績與在線學(xué)習(xí)數(shù)學(xué)時(shí)長之間的相關(guān)關(guān)系,對在校高三學(xué)生隨機(jī)抽取45名進(jìn)行調(diào)查.知道其中有25人每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長是不超過1小時(shí)的,得到了如下的等高條形圖:
(Ⅰ)是否有的把握認(rèn)為“高三學(xué)生的這次摸底考試數(shù)學(xué)成績與其在線學(xué)習(xí)時(shí)長有關(guān)”;
(Ⅱ)將頻率視為概率,從全校高三學(xué)生這次數(shù)學(xué)成績超過120分的學(xué)生中隨機(jī)抽取10人,求抽取的10人中每天在線學(xué)習(xí)時(shí)長超過1小時(shí)的人數(shù)的數(shù)學(xué)期望和方差.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知l,m是平面外的兩條不同直線.給出下列三個(gè)論斷:
①l⊥m;②m∥;③l⊥.
以其中的兩個(gè)論斷作為條件,余下的一個(gè)論斷作為結(jié)論,則三個(gè)命題中正確命題的個(gè)數(shù)為( )個(gè).
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,且,,平面平面ABC.
(1)求證:平面平面;
(2)若,,求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】請從下面三個(gè)條件中任選一個(gè),補(bǔ)充在下面的橫線上,并作答.
①AB⊥BC,②FC與平面ABCD所成的角為,③∠ABC.
如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,PA⊥平面ABCD,且PA=AB=2,,PD的中點(diǎn)為F.
(1)在線段AB上是否存在一點(diǎn)G,使得AF平面PCG?若存在,指出G在AB上的位置并給以證明;若不存在,請說明理由;
(2)若_______,求二面角F﹣AC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(其中,m,n為常數(shù))
(1)當(dāng)時(shí),對有恒成立,求實(shí)數(shù)n的取值范圍;
(2)若曲線在處的切線方程為,函數(shù)的零點(diǎn)為,求所有滿足的整數(shù)k的和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com