動圓過定點,且與直線相切,其中.設(shè)圓心的軌跡的程為
(1)求;
(2)曲線上的一定點(0) ,方向向量的直線(不過P點)與曲線交與A、B兩點,設(shè)直線PA、PB斜率分別為,,計算;
(3)曲線上的兩個定點、,分別過點作傾斜角互補(bǔ)的兩條直線分別與曲線交于兩點,求證直線的斜率為定值;
(1)
(2)0(3)
解析試題分析:(1)過點作直線的垂線,垂足為,由題意知:,即動點到定點與定直線的距離相等,由拋物線的定義知,點的軌跡為拋物線, 2分
其中為焦點,為準(zhǔn)線,所以軌跡方 程為; 4分
(2)證明:設(shè) A()、B()
過不過點P的直線方程為 5分
由得 6分
則, 7分
== 8分
==0. 10分
(3)設(shè),
== 12分
設(shè)的直線方程為為與曲線的交點
由 ,的兩根為
則 14分
同理,得 15分
代入(***)計算 17分
18分
考點:直線與拋物線的位置關(guān)系的運(yùn)用
點評:解決的關(guān)鍵是能利用直線方程與拋物線方程建立方程組,結(jié)合韋達(dá)定理和斜率公式來的餓到求解,屬于中檔題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知平面上動點P()及兩個定點A(-2,0),B(2,0),直線PA、PB的斜率分別為、 且
(I)求動點P所在曲線C的方程。
(II)設(shè)直線與曲線C交于不同的兩點M、N,當(dāng)OM⊥ON時,求點O到直線的距離。(O為坐標(biāo)原點)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知M (-3,0)﹑N (3,0),P為坐標(biāo)平面上的動點,且直線PM與直線PN的斜率之積為常數(shù)m (m,m0),點P的軌跡加上M、N兩點構(gòu)成曲線C.
求曲線C的方程并討論曲線C的形狀;
(2) 若,曲線C過點Q (2,0) 斜率為的直線與曲線C交于不同的兩點A﹑B,AB中點為R,直線OR (O為坐標(biāo)原點)的斜率為,求證 為定值;
(3) 在(2)的條件下,設(shè),且,求在y軸上的截距的變化范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)雙曲線與橢圓+=1有公共的焦點,且與橢圓相交,它們的交點中一個交點的縱坐標(biāo)是4,求雙曲線的標(biāo)準(zhǔn)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,
軸被拋物線截得的線段長等于的長半軸長.
(1)求的方程;
(2)設(shè)與軸的交點為,過坐標(biāo)原點的直線
與相交于兩點,直線分別與相交于.
①證明:為定值;
②記的面積為,試把表示成的函數(shù),并求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點是橢圓的右焦點,點、分別是軸、
軸上的動點,且滿足.若點滿足.
(Ⅰ)求點的軌跡的方程;
(Ⅱ)設(shè)過點任作一直線與點的軌跡交于、兩點,直線、與直線分別交
于點、(為坐標(biāo)原點),試判斷是否為定值?若是,求出這個定值;若不是,
請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的長軸長為,一個焦點的坐標(biāo)為(1,0).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l:y=kx與橢圓C交于A,B兩點,點P為橢圓的右頂點.
(。┤糁本l斜率k=1,求△ABP的面積;
(ⅱ)若直線AP,BP的斜率分別為,,求證:為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com