15.定義在(0,$\frac{π}{2}$)的函數(shù)f(x)=8sinx-tanx的最大值為$3\sqrt{3}$.

分析 利用導(dǎo)函數(shù)研究其單調(diào)性,求其最大值.

解答 解:函數(shù)f(x)=8sinx-tanx,
那么:f′(x)=8cosx-$\frac{1}{co{s}^{2}x}$=$\frac{8co{s}^{3}x-1}{co{s}^{2}x}$,
令f′(x)=0,
得:cosx=$\frac{1}{2}$
∵x∈(0,$\frac{π}{2}$),
∴x=$\frac{π}{3}$.
當(dāng)x∈(0,$\frac{π}{3}$)時(shí),f′(x)>0,函數(shù)f(x)在區(qū)間(0,$\frac{π}{3}$)上是單調(diào)增函數(shù).
當(dāng)x∈($\frac{π}{3}$,$\frac{π}{2}$)時(shí),f′(x)<0,函數(shù)f(x)在區(qū)間($\frac{π}{3}$,$\frac{π}{2}$)上是單調(diào)減函數(shù).
∴當(dāng)x=$\frac{π}{3}$時(shí),函數(shù)f(x)取得最大值為$3\sqrt{3}$
故答案為:$3\sqrt{3}$.

點(diǎn)評(píng) 本題考查了利用導(dǎo)函數(shù)研究其單調(diào)性,求其最大值的問題.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0))的右焦點(diǎn)為(2$\sqrt{2}$,0),且過點(diǎn)c>1.
(Ⅰ)求橢圓Γ的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l:y=x+m(m∈R)與橢圓Γ交于不同兩點(diǎn)A、B,且|AB|=3$\sqrt{2}$.若點(diǎn)P(x0,2)滿足|$\overrightarrow{PA}$|=|$\overrightarrow{PB}$|,求x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.指數(shù)函數(shù)y=ax(a>0,a≠1)的反函數(shù)圖象過點(diǎn)(9,2),則a=( 。
A.3B.2C.9D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知向量$\overrightarrow{a}$=(-1,3),$\overrightarrow$=(2,y),若$\overrightarrow{a}∥\overrightarrow$,則實(shí)數(shù)y的值為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若圓錐底面半徑為2,高為$\sqrt{5}$,則其側(cè)面積為6π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在等差數(shù)列{an}中,a3+a4+a5+a6+a7=400,則a2+a8=( 。
A.40B.80C.160D.320

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知F1、F2分別為橢圓$\frac{{x}^{2}}{2}$+y2=1的左右兩個(gè)焦點(diǎn),過F1作傾斜角為$\frac{π}{4}$的弦AB,則△F2AB的面積為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\frac{4}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{4\sqrt{2}}{3}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,橢圓C0:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0,a,b為常數(shù)),動(dòng)圓C1:x2+y2=t12,b<t1<a..點(diǎn)A1,A2分別為C0的左,右頂點(diǎn),C1與C0相交于A,B,C,D四點(diǎn).
(1)若C1經(jīng)過C0的焦點(diǎn),且C0離心率為$\frac{\sqrt{6}}{3}$,求∠DOC的大小;
(2)設(shè)動(dòng)圓C2:x2+y2=t22與C0相交于A′,B′,C′,D′四點(diǎn),其中b<t2<a,t1≠t2.若t12+t22=a2+b2,證明:矩形ABCD與矩形A′B′C′D′的面積相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知直線2ax+by-2=0(a>0,b>0)過點(diǎn)(1,2),則$\frac{1}{a}+\frac{1}$的最小值是(  )
A.2B.3C.4D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案