定義在R上的偶函數(shù)滿足,且當(dāng)時單調(diào)遞增,則(   )

A.                 B.  

C.                 D.

 

【答案】

B

【解析】解:由題意可得f(x+2)=f(x)且f(x)=f(-x)

∴f(-5)=f(5)=f(3)=f(1),f(5 /2 )=f(1 /2 )

又∵1>1 /2 >1/ 3 且f(x)在(0,1]上單調(diào)遞增

∴f(1)>f(1/ 2 )>f(1 /3 )即f(-5)>f(5/ 2 )>f(1 /3 )

故選B

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

16、定義在R上的偶函數(shù)f(x),滿足以f(x+2)=-f(x)且在[0,2]上是減函數(shù),若方程f(x)=m(m>0)在區(qū)間[-2,6]上有四個不同的根x1,x2,x3,x4,則x1+x2+x3+x4=
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年湖南省長沙市同升湖實驗學(xué)校高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

定義在R上的偶函數(shù)f(x),滿足以f(x+2)=-f(x)且在[0,2]上是減函數(shù),若方程f(x)=m(m>0)在區(qū)間[-2,6]上有四個不同的根x1,x2,x3,x4,則x1+x2+x3+x4=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京五中高三(上)第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

定義在R上的偶函數(shù)f(x),滿足以f(x+2)=-f(x)且在[0,2]上是減函數(shù),若方程f(x)=m(m>0)在區(qū)間[-2,6]上有四個不同的根x1,x2,x3,x4,則x1+x2+x3+x4=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)(理科)一輪復(fù)習(xí)講義:2.3 函數(shù)的奇偶性(解析版) 題型:解答題

定義在R上的偶函數(shù)f(x),滿足以f(x+2)=-f(x)且在[0,2]上是減函數(shù),若方程f(x)=m(m>0)在區(qū)間[-2,6]上有四個不同的根x1,x2,x3,x4,則x1+x2+x3+x4=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考數(shù)學(xué)猜題精粹(文科)(解析版) 題型:解答題

定義在R上的偶函數(shù)f(x),滿足以f(x+2)=-f(x)且在[0,2]上是減函數(shù),若方程f(x)=m(m>0)在區(qū)間[-2,6]上有四個不同的根x1,x2,x3,x4,則x1+x2+x3+x4=   

查看答案和解析>>

同步練習(xí)冊答案