如圖,在正方體A1B1C1D1­ABCD中,E是C1D1的中點(diǎn),則異面直線DE與AC夾角的余弦值為
A.B.C.D.
D

試題分析:取中點(diǎn),連接即為異面直線夾角,設(shè)邊長為1
由余弦定理的
點(diǎn)評:先將異面直線平移為相交直線找到所求角,再在三角形中求三邊余弦定理求角
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)如圖幾何體,是矩形,,,
上的點(diǎn),且

(1)求證:;
(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(理)如圖,將∠B=,邊長為1的菱形ABCD沿對角線AC折成大小等于θ的二面角BACD,若θ∈[,],M、N分別為ACBD的中點(diǎn),則下面的四種說法:

ACMN
DM與平面ABC所成的角是θ;
③線段MN的最大值是,最小值是;
④當(dāng)θ=時(shí),BCAD所成的角等于.
其中正確的說法有    (填上所有正確說法的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)如圖所示,在三棱柱中,點(diǎn)為棱的中點(diǎn).

(1)求證:.
(2)若三棱柱為直三棱柱,且各棱長均為,求異面直線所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列四個(gè)命題中,真命題的個(gè)數(shù)為(   )(1)若兩平面有三個(gè)公共點(diǎn),則這兩個(gè)平面重合;(2)兩條直線可以確定一個(gè)平面;(3)若;(4)空間中,相交于同一點(diǎn)的三條直線在同一平面內(nèi)。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,四邊形均為菱形, ,且,

(Ⅰ)求證:平面
(Ⅱ)求證:AE∥平面FCB;
(Ⅲ)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題中,錯(cuò)誤的命題是(   )
A.平行于同一直線的兩個(gè)平面平行。
B.一條直線與兩個(gè)平行平面中的一個(gè)相交,那么這條直線必和另一個(gè)平面相交。
C.平行于同一平面的兩個(gè)平面平行。
D.一條直線與兩個(gè)平行平面所成的角相等。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四面體ABCD中,O、E分別是BD、BC的中點(diǎn),

(I)求證:平面BCD;
(II)求異面直線AB與CD所成角的余弦值;
(III)求點(diǎn)E到平面ACD的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正方體中,下列幾種說法正確的是   (    )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案