某工廠用甲、乙兩種原料生產(chǎn)A、B兩種產(chǎn)品,已知生產(chǎn)A產(chǎn)品1 t、B產(chǎn)品1 t分別需要的甲、乙原料數(shù),可獲得的利潤(rùn)及該廠現(xiàn)有原料數(shù),如下表所示:

(1)在現(xiàn)有原料下,A、B產(chǎn)品應(yīng)各生產(chǎn)多少才能使利潤(rùn)總額最大?

(2)如果B產(chǎn)品1 t的利潤(rùn)增加到20萬(wàn)元,原來(lái)的最優(yōu)解將如何改變?

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•大連一模)某工廠用甲、乙兩種不同工藝生產(chǎn)一大批同一種零件,零件尺寸均在[21,7,22.3](單位:cm)之間的零件,把零件尺寸在[21.9,22.1)的記為一等品,尺寸在[21.8,21.9)∪[22.1,22.2)的記為二等品,尺寸在[21.7,21.8)∪[22.2,22.3]的記為三等品,現(xiàn)從甲、乙工藝生產(chǎn)的零件中各隨機(jī)抽取100件產(chǎn)品,所得零件尺寸的頻率分布直方圖如圖所示:
(Ⅰ)根據(jù)上述數(shù)據(jù)完成下列2×2列聯(lián)表,根據(jù)此數(shù)據(jù)你認(rèn)為選擇不同的工藝與生產(chǎn)出一等品是否有關(guān)?
甲工藝 乙工藝 合計(jì)
一等品
非一等品
合計(jì)
P(x2≥k 0.05 0.01
k 3.841 6.635
附:x2=
n(n11n22-n12n21)2
n1+n2+n1+n2

(Ⅱ)以上述各種產(chǎn)品的頻率作為各種產(chǎn)品發(fā)生的概率,若一等品、二等品、三等品的單件利潤(rùn)分別為30元、20元、15元,你認(rèn)為以后該工廠應(yīng)該選擇哪種工藝生產(chǎn)該種零件?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某工廠用甲、乙兩種不同工藝生產(chǎn)一大批同一種零件,零件尺寸均在[21,7,22.3](單位:cm)之間的零件,把零件尺寸在[21.9,22.1)的記為一等品,尺寸在[21.8,21.9)∪[22.1,22.2)的記為二等品,尺寸在[21.7,21.8)∪[22.2,22.3]的記為三等品,現(xiàn)從甲、乙工藝生產(chǎn)的零件中各隨機(jī)抽取100件產(chǎn)品,所得零件尺寸的頻率分布直方圖如圖所示:
(Ⅰ)根據(jù)上述數(shù)據(jù)完成下列2×2列聯(lián)表,根據(jù)此數(shù)據(jù)你認(rèn)為選擇不同的工藝與生產(chǎn)出一等品是否有關(guān)?
甲工藝乙工藝合計(jì)
一等品
非一等品
合計(jì)
P(x2≥k0.050.01
k3.8416.635
附:數(shù)學(xué)公式
(Ⅱ)以上述各種產(chǎn)品的頻率作為各種產(chǎn)品發(fā)生的概率,若一等品、二等品、三等品的單件利潤(rùn)分別為30元、20元、15元,你認(rèn)為以后該工廠應(yīng)該選擇哪種工藝生產(chǎn)該種零件?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:大連一模 題型:解答題

某工廠用甲、乙兩種不同工藝生產(chǎn)一大批同一種零件,零件尺寸均在[21,7,22.3](單位:cm)之間的零件,把零件尺寸在[21.9,22.1)的記為一等品,尺寸在[21.8,21.9)∪[22.1,22.2)的記為二等品,尺寸在[21.7,21.8)∪[22.2,22.3]的記為三等品,現(xiàn)從甲、乙工藝生產(chǎn)的零件中各隨機(jī)抽取100件產(chǎn)品,所得零件尺寸的頻率分布直方圖如圖所示:
精英家教網(wǎng)

(Ⅰ)根據(jù)上述數(shù)據(jù)完成下列2×2列聯(lián)表,根據(jù)此數(shù)據(jù)你認(rèn)為選擇不同的工藝與生產(chǎn)出一等品是否有關(guān)?
甲工藝 乙工藝 合計(jì)
一等品
非一等品
合計(jì)
P(x2≥k 0.05 0.01
k 3.841 6.635
附:x2=
n(n11n22-n12n21)2
n1+n2+n1+n2

(Ⅱ)以上述各種產(chǎn)品的頻率作為各種產(chǎn)品發(fā)生的概率,若一等品、二等品、三等品的單件利潤(rùn)分別為30元、20元、15元,你認(rèn)為以后該工廠應(yīng)該選擇哪種工藝生產(chǎn)該種零件?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年遼寧省大連市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

某工廠用甲、乙兩種不同工藝生產(chǎn)一大批同一種零件,零件尺寸均在[21,7,22.3](單位:cm)之間的零件,把零件尺寸在[21.9,22.1)的記為一等品,尺寸在[21.8,21.9)∪[22.1,22.2)的記為二等品,尺寸在[21.7,21.8)∪[22.2,22.3]的記為三等品,現(xiàn)從甲、乙工藝生產(chǎn)的零件中各隨機(jī)抽取100件產(chǎn)品,所得零件尺寸的頻率分布直方圖如圖所示:
(Ⅰ)根據(jù)上述數(shù)據(jù)完成下列2×2列聯(lián)表,根據(jù)此數(shù)據(jù)你認(rèn)為選擇不同的工藝與生產(chǎn)出一等品是否有關(guān)?
甲工藝乙工藝合計(jì)
一等品
非一等品
合計(jì)
P(x2≥k0.050.01
k3.8416.635
附:
(Ⅱ)以上述各種產(chǎn)品的頻率作為各種產(chǎn)品發(fā)生的概率,若一等品、二等品、三等品的單件利潤(rùn)分別為30元、20元、15元,你認(rèn)為以后該工廠應(yīng)該選擇哪種工藝生產(chǎn)該種零件?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案