在三棱錐S—ABC中,△ABC是邊長為4的正三角形,平面SAC⊥平面ABC,SA=SC=,M、N分別為AB、SB的中點.

(1)證明AC⊥SB;

(2)求二面角N—CM—B的余弦值;

(3)求點B到平面CMN的距離.

思路分析:由題目所給的條件,恰當(dāng)?shù)亟⒖臻g直角坐標(biāo)系,由空間向量的坐標(biāo)表示的內(nèi)容進(jìn)行證明、求解即可.

解:(1)證明如下,取AC中點O,連結(jié)OS、OB.

∵SA=SC,BA=BC,

∴AC⊥SO且AC⊥BO.

∵平面SAC⊥平面ABC,平面SAC∩平面ABC=AC,

∴SO⊥面ABC.∴SO⊥BO.

如圖所示建立空間直角坐標(biāo)系O-xyz.

則A(2,0,0),C(-2,0,0),S(0,0,2),B(0,,0).∴=(-4,0,0),=(0,-,2),∵·=(-4,0,0)·(0,-,2)=0,

∴AC⊥BS.

(2)解:由(1),得M(1,,0),=(3,,0),(-2,0,2)=(-1,0,1).

設(shè)n=(x,y,z)為平面CMN的一個法向量,則

取x=-1,y=,z=-1,則n=(-1,,-1),

=(0,0,2)為平面ABC的一個法向量,

∴cos〈n,〉=.

∴二面角N-CM-B的余弦值為.

(3)解:由(1)(2),得=(2,,0).n=(-1,,-1)為平面CMN的一個法向量.∴點B到平面CMN的距離d=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐S-ABC中,側(cè)面SAB與側(cè)面SAC均為邊長為1的等邊三角形,∠BAC=90°,O為BC中點.
(Ⅰ)證明:SO⊥平面ABC;
(Ⅱ)證明:SA⊥BC;
(Ⅲ)求三棱錐S-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐S-ABC中,側(cè)面SAB與側(cè)面SAC均為等邊三角形,∠BAC=90°,O為BC中點.
(Ⅰ)證明:SO⊥平面ABC;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐S-ABC中,側(cè)面SAB⊥底面ABC,且∠ASB=∠ABC=90°,AS=SB=2,AC=2
3


(Ⅰ)求證SA⊥SC;
(Ⅱ)在平面幾何中,推導(dǎo)三角形內(nèi)切圓的半徑公式r=
2S
l
(其中l(wèi)是三角形的周長,S是三角形的面積),常用如下方法(如右圖):
①以內(nèi)切圓的圓心O為頂點,將三角形ABC分割成三個小三角形:△OAB,△OAC,△OB精英家教網(wǎng)C.
②設(shè)△ABC三邊長分別為a,b,c.由S△ABC=S△OBC+S△OAC+S△OAB,
S=
1
2
ar+
1
2
br+
1
2
cr
=
1
2
lr
,則r=
2S
l

類比上述方法,請給出四面體內(nèi)切球半徑的計算公式(不要求說明類比過程),并利用該公式求出三棱錐S-ABC內(nèi)切球的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐S-ABC中,SA=AB=BC=AC=
2
SB=
2
SC
,O為BC中點.
(1)求證:SO⊥平面ABC
(2)在線段AB上是否存在一點E,使二面角B-SC-E的平面角的余弦值為
15
5
?若存在,確定E點位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐S-ABC中,側(cè)棱SC⊥平面SAB,SA⊥BC,側(cè)面△SAB,△SBC,△SAC的面積分別為1,
3
2
,3,則此三棱錐的外接球的表面積為(  )

查看答案和解析>>

同步練習(xí)冊答案