(2013•肇慶二模)若a+bi=(1+i)(2-i)(i是虛數(shù)單位,a,b是實數(shù)),則z=a-bi在復(fù)平面內(nèi)對應(yīng)的點是( 。
分析:利用復(fù)數(shù)的運算法則和虛部的定義即可得出.
解答:解:∵a+bi=(1+i)(2-i)=3+i
∴z=a-bi=3-i.所對應(yīng)的點(3,-1)位于第四象限.
故選D.
點評:熟練掌握復(fù)數(shù)的運算法則和虛部的定義是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•肇慶二模)(坐標(biāo)系與參數(shù)方程選做題)
若以直角坐標(biāo)系的x軸的非負(fù)半軸為極軸,曲線l1的極坐標(biāo)系方程為ρsin(θ-
π
4
)=
2
2
(ρ>0,0≤θ≤2π),直線l2的參數(shù)方程為
x=1-2t
y=2t+2
(t為參數(shù)),則l1與l2的交點A的直角坐標(biāo)是
(1,2)
(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•肇慶二模)定義全集U的子集M的特征函數(shù)為fM(x)=
1,x∈M
0,x∈CUM
,這里?UM表示集合M在全集U中的補集,已M⊆U,N⊆U,給出以下結(jié)論:
①若M⊆N,則對于任意x∈U,都有fM(x)≤fN(x);
②對于任意x∈U都有fCUM(x)=1-fM(x)
③對于任意x∈U,都有fM∩N(x)=fM(x)•fN(x);
④對于任意x∈U,都有fM∪N(x)=fM(x)•fN(x).
則結(jié)論正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•肇慶二模)不等式|2x+1|>|5-x|的解集是
(-∞,-6)∪(
4
3
,+∞)
(-∞,-6)∪(
4
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•肇慶二模)在等差數(shù)列{an}中,a15=33,a25=66,則a35=
99
99

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•肇慶二模)
π
2
0
(3x+sinx)dx=
3
8
π2+1
3
8
π2+1

查看答案和解析>>

同步練習(xí)冊答案