在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),Ox為極軸建立極坐標(biāo)系,且兩種坐標(biāo)系長(zhǎng)度單位一致.已知直線l的極坐標(biāo)方程為ρcos(θ+數(shù)學(xué)公式)=數(shù)學(xué)公式-1,圓C在直角坐標(biāo)系中的參數(shù)方程為數(shù)學(xué)公式(θ為參數(shù)),求直線l與圓C的公共點(diǎn)的個(gè)數(shù).

解:將方程ρcos(θ+)=-1化為直角坐標(biāo)方程:x-y+-1=0.
將參數(shù)方程化為普通方程:(x-1)2+y2=1.
圓心(1,0)到直線l的距離d==1,而圓C的半徑為1,
所以直線l與圓C相切,即它們的公共點(diǎn)的個(gè)數(shù)為1.
分析:把極坐標(biāo)方程化為直角坐標(biāo)方程,把參數(shù)方程化為普通方程,求出圓心(1,0)到直線l的距離,與半徑作對(duì)照,即得直線l與圓C的公共點(diǎn)的個(gè)數(shù).
點(diǎn)評(píng):本題考查參數(shù)方程與普通方程之間的轉(zhuǎn)化,把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,點(diǎn)到直線的距離公式的應(yīng)用,直線和圓的位置關(guān)系,求出圓心(1,0)到直線l的距離,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,雙曲線中心在原點(diǎn),焦點(diǎn)在y軸上,一條漸近線方程為x-2y=0,則它的離心率為( 。
A、
5
B、
5
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為
x=2t-1 
y=4-2t .
(參數(shù)t∈R),以直角坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立相應(yīng)的極坐標(biāo)系.在此極坐標(biāo)系中,若圓C的極坐標(biāo)方程為ρ=4cosθ,則圓心C到直線l的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程) 在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為
x=2cosθ
y=2sinθ+2
 (參數(shù)θ∈[0,2π)),若以原點(diǎn)為極點(diǎn),射線ox為極軸建立極坐標(biāo)系,則圓C的圓心的極坐標(biāo)為
 
,圓C的極坐標(biāo)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣東)在平面直角坐標(biāo)系xOy中,直線3x+4y-5=0與圓x2+y2=4相交于A、B兩點(diǎn),則弦AB的長(zhǎng)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).
(Ⅰ)若點(diǎn)A的橫坐標(biāo)是
3
5
,點(diǎn)B的縱坐標(biāo)是
12
13
,求sin(α+β)的值;
(Ⅱ) 若|AB|=
3
2
,求
OA
OB
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案