(本小題共14分)四棱錐P-ABCD中,底面ABCD為菱形,且,側(cè)面PAD是正三角形,其所在的平面垂直于底面ABCD,點(diǎn)G為AD的中點(diǎn).
(1)求證:BG面PAD;
(2)E是BC的中點(diǎn),在PC上求一點(diǎn)F,使得PG面DEF.
(1)連結(jié)BD,因?yàn)樗倪呅蜛BCD為菱形,且,
所以三角形ABD為正三角形,又因?yàn)辄c(diǎn)G為AD的中點(diǎn),所以BGAD;---------4分
因?yàn)槊鍼AD底面ABCD,且面PAD底面ABCD=AD,
所以BG面PAD. ----------------7分
(2)當(dāng)點(diǎn)F為PC的中點(diǎn)時(shí),PG面DEF
連結(jié)GC交DE于點(diǎn)H
因?yàn)镋、G分別為菱形ABCD的邊BC、AD的中點(diǎn),所以四邊形DGEC為平行四邊形
所以點(diǎn)H為DE的中點(diǎn),又點(diǎn)F為PC的中點(diǎn)
所以FH時(shí)三角形PGC的中位線,所以PGFH ------------------------10分
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052503382931253158/SYS201205250340312968792414_DA.files/image005.png">面DEF,面DEF
所以PG面DEF.
綜上:當(dāng)點(diǎn)F為PC的中點(diǎn)時(shí),PG面DEF. ---------------------------14分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題共14分)
四棱錐P—ABCD中,PA⊥底面ABCD,AB//CD,AD=CD=1,∠BAD=120°,PA=,∠ACB=90°。
(I)求證:BC⊥平面PAC;
(II)求二面角D—PC—A的大。
。↖II)求點(diǎn)B到平面PCD的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題共14分)
如圖,四棱錐的底面是正方形,,點(diǎn)E在棱PB上。
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)且E為PB的中點(diǎn)時(shí),求AE與平面PDB所成的角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年北京市東城區(qū)高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題共14分)如圖,在四棱錐中,底面為菱形,,為的中點(diǎn),.
(Ⅰ)求證:平面;
(Ⅱ)點(diǎn)在線段上,,試確定的值,使平面;
(Ⅲ)若平面,平面平面,求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年普通高中招生考試北京市高考理科數(shù)學(xué) 題型:解答題
(本小題共14分)
如圖,在四棱錐中,平面,底面是菱形,.
(Ⅰ)求證:平面
(Ⅱ)若求與所成角的余弦值;
(Ⅲ)當(dāng)平面與平面垂直時(shí),求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com