(本小題滿分14分)
設(shè)橢圓)的兩個(gè)焦點(diǎn)是),且橢圓與圓有公共點(diǎn).
(1)求的取值范圍;
(2)若橢圓上的點(diǎn)到焦點(diǎn)的最短距離為,求橢圓的方程;
(3)對(duì)(2)中的橢圓,直線)與交于不同的兩點(diǎn),若線段的垂直平分線恒過(guò)點(diǎn),求實(shí)數(shù)的取值范圍.

(1)(2)(3)

解析試題分析:解:(1)由已知,,
∴方程組有實(shí)數(shù)解,從而,故 …2分
所以,即的取值范圍是.                   ……………4分
(2)設(shè)橢圓上的點(diǎn)到一個(gè)焦點(diǎn)的距離為,

).                           ……………6分
,∴當(dāng)時(shí),
于是,,解得 .
∴所求橢圓方程為.                       ……………8分
(3)由 (*)
∵直線與橢圓交于不同兩點(diǎn), ∴△,即.①  ………10分
設(shè)、,則是方程(*)的兩個(gè)實(shí)數(shù)解,
,∴線段的中點(diǎn)為
又∵線段的垂直平分線恒過(guò)點(diǎn),∴,
,即(k)②          ……………12分
由①,②得,,又由②得,
∴實(shí)數(shù)的取值范圍是.                            ……………14分
考點(diǎn):橢圓的方程和性質(zhì);直線的方程;兩直線垂直的判定定理。
點(diǎn)評(píng):本題第一小題也可這樣來(lái)求解,橢圓跟y軸正半軸的交點(diǎn)為,若橢圓要與圓相交,則;第二小題可以結(jié)合橢圓的特點(diǎn)來(lái)求,當(dāng)橢圓上的點(diǎn)是時(shí),它到附近的焦點(diǎn)的距離就是最短距離;第三小題需要注意直線與橢圓相交時(shí)應(yīng)滿足的條件。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知橢圓的右焦點(diǎn),且,設(shè)短軸的一個(gè)端點(diǎn)為,原點(diǎn)到直線的距離為,過(guò)原點(diǎn)和軸不重合的直線與橢圓相交于兩點(diǎn),且.
(1)求橢圓的方程;
(2)是否存在過(guò)點(diǎn)的直線與橢圓相交于不同的兩點(diǎn),且使得成立?若存在,試求出直線的方程;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分10分)已知直線與圓的交點(diǎn)為A、B,
(1)求弦長(zhǎng)AB;
(2)求過(guò)A、B兩點(diǎn)且面積最小的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本大題滿分14分)
已知△的兩個(gè)頂點(diǎn)的坐標(biāo)分別是,,且所在直線的斜率之積等于
(Ⅰ)求頂點(diǎn)的軌跡的方程,并判斷軌跡為何種圓錐曲線;
(Ⅱ)當(dāng)時(shí),過(guò)點(diǎn)的直線交曲線兩點(diǎn),設(shè)點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為(不重合).求證直線軸的交點(diǎn)為定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知兩點(diǎn)F1(-1,0)及F2(1,0),點(diǎn)P在以F1、F2為焦點(diǎn)的橢圓C上,且|PF1|、|F1F2|、|PF2|構(gòu)成等差數(shù)列.

(1)求橢圓C的方程;
(2)如圖,動(dòng)直線l:y=kx+m與橢圓C有且僅有一個(gè)公共點(diǎn),點(diǎn)M,N是直線l上的兩點(diǎn),且F1M⊥l,F(xiàn)2N⊥l.求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
設(shè)雙曲線的方程為,為其左、右兩個(gè)頂點(diǎn),是雙曲線 上的任意一點(diǎn),作,垂足分別為、,交于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)設(shè)的離心率分別為、,當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合.
(Ⅰ)求拋物線的方程;
(Ⅱ)求拋物線的準(zhǔn)線與雙曲線的漸近線圍成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分15分)
已知點(diǎn),是拋物線上相異兩點(diǎn),且滿足
(Ⅰ)若的中垂線經(jīng)過(guò)點(diǎn),求直線的方程;
(Ⅱ)若的中垂線交軸于點(diǎn),求的面積的最大值及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),它的準(zhǔn)線經(jīng)過(guò)雙曲線的一個(gè)焦點(diǎn)且垂直于的兩個(gè)焦點(diǎn)所在的軸,若拋物線與雙曲線的一個(gè)交點(diǎn)是
(1)求拋物線的方程及其焦點(diǎn)的坐標(biāo);
(2)求雙曲線的方程及其離心率

查看答案和解析>>

同步練習(xí)冊(cè)答案