【題目】已知曲線的方程是:,點.
(1)若,直線過點且與曲線只有一個公共點,求直線的方程;
(2)若曲線表示圓且被直線截得的弦長為,求實數(shù)的值.
【答案】(1)或;(2).
【解析】
試題分析:(1)時,配方得,這是圓的方程.當直線斜率不存在是,方程為與圓恰好只有一個交點.當直線斜率存在時,設直線的點斜式方程,利用圓心到直線的距離等于半徑,可求出斜率為,從而求得直線方程為;(2)配方得,圓心的到直線的距離,據(jù)圓的弦長公式得.
試題解析:
(1)當時,曲線的方程可化為:,表示圓,又直線過點且與曲線只有一個公共點,故直線與圓相切.
① 當直線的斜率存在時,設直線的方程為:,即,故,直線的方程為:;
② 當直線的斜率不存在時,直線的方程為:,
綜上得所求直線的方程為或.
(2)配方得,方程表示圓知得.
圓心的到直線的距離,根據(jù)圓的弦長公式得.
科目:高中數(shù)學 來源: 題型:
【題目】有下列說法:①函數(shù)y=-cos 2x的最小正周期是π;
②終邊在y軸上的角的集合是{α|α=,k∈Z};
③在同一直角坐標系中,函數(shù)y=sin x的圖象和函數(shù)y=x的圖象有三個公共點;
④把函數(shù)y=3sin(2x+)的圖象向右平移個單位長度得到函數(shù)y=3sin 2x的圖象;
⑤函數(shù)y=sin(x-)在[0,π]上是減函數(shù).
其中,正確的說法是________.(填序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】 一個幾何體的三視圖如圖所示,已知正(主)視圖是底邊長為1的平行四邊形,側(左)視圖是一個長為,寬為1的矩形,俯視圖為兩個邊長為1的正方形拼成的矩形.
(1)求該幾何體的體積;
(2)求該幾何體的表面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于定義域為的函數(shù),如果存在區(qū)間,同時滿足:
①在上是單調(diào)函數(shù);
②當定義域是時,的值域也是.
則稱是該函數(shù)的“等域區(qū)間”.
(1)求證:函數(shù)不存在“等域區(qū)間”;
(2)已知函數(shù)(,)有“等域區(qū)間”,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),令,其中是函數(shù)的導函數(shù).
(1)當時,求的極值;
(2)當時,若存在,使得恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直線l:x-y+1=0關于y輛對稱的直線方程為 ( )
A. x+y-1=0 B. x-y+1=0
C. x+y+1=0 D. x-y-1=0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商店計劃每天購進某商品若干件,商店每銷售一件該商品可獲利潤60元,若供大于求,剩余商品全部退回,但每件商品虧損10元;若供不應求,則從外部調(diào)劑,此時每件調(diào)劑商品可獲利40元.
(1)若商品一天購進該商品10件,求當天的利潤(單位:元)關于當天需求量(單位:件,)的函數(shù)解析式;
(2)商店記錄了50天該商品的日需求量(單位:件,),整理得下表:
若商店一天購進10件該商品,以50天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天的利潤在區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線與拋物線交于兩點,且線段恰好被點平分.
(1)求直線的方程;
(2)拋物線上是否存在點和,使得關于直線對稱?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com