(2011•廣州模擬)如果在一次試驗中,某事件A發(fā)生的概率為p,那么在n次獨立重復試驗中,事件A發(fā)生偶數(shù)次的概率為
1
2
[1+(1-2p)n]
1
2
[1+(1-2p)n]
分析:事件A發(fā)生偶數(shù)次的概率為 Cn0p0(1-p)n+Cn2p2(1-p)n-2+Cn4p4(1-p)n-4+…,而把[(1-p)+p]n和[(1-p)-p]n的展開式相加并除以2,即可得到事件A發(fā)生偶數(shù)次的
概率.
解答:解:事件A發(fā)生偶數(shù)次的概率為 Cn0p0(1-p)n+Cn2p2(1-p)n-2+Cn4p4(1-p)n-4+…
又[(1-p)+p]n=Cn0p0(1-p)n+Cn1p1(1-p)n-1+Cn2p2(1-p)n-2+Cn3p3(1-p)n-3+Cn4p4(1-p)n-4+…+Cnnpn(1-p)0  ①,
[(1-p)-p]n=Cn0p0(1-p)n-Cn1p1(1-p)n-1+Cn2p2(1-p)n-2-Cn3p3(1-p)n-3+Cn4p4(1-p)n-4+…+(-1)nCnnpn(1-p)0 ②,
由①+②并除以2 可得
1
2
[1+(1-2p)n]
=Cn0p0(1-p)n+Cn2p2(1-p)n-2+Cn4p4(1-p)n-4+…,
故答案為:
1
2
[1+(1-2p)n]
點評:本題主要考查n次獨立重復實驗中恰好發(fā)生k次的概率,二項式定理的應用,得到[(1-p)+p]n和[(1-p)-p]n的展開式,是解題的關鍵,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•廣州模擬)已知函數(shù)f(x)=cos2x+
3
sinxcosx-
1
2

(Ⅰ)若x∈[0,
π
2
]
,求f(x)的最大值及取得最大值時相應的x的值;
(Ⅱ)在△ABC中,a、b、c分別為角A、B、C的對邊,若f(
A
2
)=1
,b=l,c=4,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•廣州模擬)定義:若函數(shù)f(x)的圖象經(jīng)過變換T后所得圖象對應函數(shù)的值域與f(x)的值域相同,則稱變換T是f(x)的同值變換.下面給出四個函數(shù)及其對應的變換T,其中T不屬于f(x)的同值變換的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•廣州模擬)已知實數(shù)x,y滿足
x≥0
y≤1
2x-2y+1≤0.
,若目標函數(shù)z=ax+y(a≠0)取得最小值時最優(yōu)解有無數(shù)個,則實數(shù)a的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•廣州模擬)設隨機變量X~N(1,52),且P(X≤0)=P(X>a-2),則實數(shù)a的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•廣州模擬)已知直線y=k(x-2)(k>0)與拋物線y2=8x相交于A、B兩點,F(xiàn)為拋物線的焦點,若|FA|=2|FB|,則k的值為
2
2
2
2

查看答案和解析>>

同步練習冊答案