(1)已知復數(shù)z=
(1-4i)(1+i)+2+4i
3+4i
i,z2+az+b=1+i,求實數(shù)a、b的值;
(2)已知z2=8+6i,求z+
100
z
的值.
分析:(1)求出z=1-i,代入z2+az+b=1+i,得:a+b-(a+2)=1+i,利用兩個復數(shù)相等的充要條件求出實數(shù)a、b的值.
(2)設z=x+yi(x、y∈R),代入z2=8+6i,解得
x=3
y=1
x=-3
y=-1.
,從而得到得到復數(shù)z的值.
解答:解:(1)z=
7+i
3+4i
=
(7+i)(3-4i)
25
=1-i
,代入z2+az+b=1+i,得:a+b-(a+2)=1+i,
所以有
a+b=1
a+2=-1
,解得
a=-3
b=4

(2)設z=x+yi(x、y∈R),代入z2=8+6i得:(x+yi)2=8+6i,所以有(x2-y2)+2xy=8+6i,
從而得方程組
x2-y2=8
2xy=6
,解得
x=3
y=1
x=-3
y=-1.

①當
2x=3
3y=14
時,原式=z(1+
100
z2
)=z(1+8-6i)=(3+i)(9-6i)=33-9i
;
②當
8x=-3
9y=-110
時,原式=z(1+
100
z2
)=z(1+8-6i)=-(3+i)(9-6i)=-33+9i

綜上所述,z+
100
z
的值是±(33-9i).
點評:本題考查復數(shù)的基本概念,復數(shù)代數(shù)形式的混合運算,兩個復數(shù)相等的充要條件,求出復數(shù)z,是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1)已知復數(shù)z=(2+i)(i-3)+4-2i; 求復數(shù)z的共軛復數(shù)
.
z
及|
.
z
|;
(2)設復數(shù)z1=(a2-2a)+ai是純虛數(shù),求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知復數(shù)z滿足z•
z
=2iz=4+2i
,求復數(shù)z.
(2)解關于x的不等式
x-a2
a-x
>0(a∈R)

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆福建省三明市高二下學期第一次階段考試文數(shù)(解析版) 題型:解答題

(1)已知復數(shù)z="(2+i)(i-3)+4-2i;" 求復數(shù)z的共軛復數(shù)及||;

(2)設復數(shù)z1=(a2-2a)+ai是純虛數(shù),求實數(shù)a的值。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年福建省三明市泰寧一中高二(下)第一次段考數(shù)學試卷(文科)(解析版) 題型:解答題

(1)已知復數(shù)z=(2+i)(i-3)+4-2i; 求復數(shù)z的共軛復數(shù)及||;
(2)設復數(shù)z1=(a2-2a)+ai是純虛數(shù),求實數(shù)a的值.

查看答案和解析>>

同步練習冊答案