【答案】
分析:根據(jù)“xg′(x)<0”和導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,判斷出函數(shù)g(x)的單調(diào)性,再將“g[f(x)]≥g(a
2-a+4)對x∈[6,10]恒成立”,轉(zhuǎn)化為“|f(x)|≤|a
2-a+4|對x∈[6,10]恒成立”,再由條件求出函數(shù)f(x)的周期、對稱軸以及f(-5)的值,再得f(-1)、f(1)、f(3)的值,再由這些性質(zhì)畫出大致圖象,右圖象求出函數(shù)f(x)在[6,10]上的值域,從而求出最大值,列出關(guān)于a的不等式求解.
解答:解:∵當(dāng)x≠0時,xg′(x)<0,∴當(dāng)x>0時,g′(x)<0,當(dāng)x<0時,g′(x)>0,
即g(x)在(-∞,0)上遞增,在(0,+∞)上遞減,
∵不等式g[f(x)]≥g(a
2-a+4)對x∈[6,10]恒成立,
∴|f(x)|≤|a
2-a+4|對x∈[6,10]恒成立,
由f(x+2)=-f(x)得,f(x+4)=-f(x+2)=f(x),則函數(shù)f(x)是以4為周期的周期函數(shù),
又∵f(x)是R上的奇函數(shù),∴f(x+2)=-f(x)=f(-x),則函數(shù)f(x)的對稱軸是x=1,
∵在x=-5處的切線方程為y=-6,∴f(-5)=-6,即f(-1)=f(3)=-6,f(1)=6,
再結(jié)合f(x)在區(qū)間[0,1]上為單調(diào)遞增函數(shù),且f(0)=0,畫出大致圖象:
由上圖得,當(dāng)x∈[6,10]時,f(x)∈[-6,6],
由|f(x)|≤|a
2-a+4|對x∈[6,10]恒成立,得6≤|a
2-a+4|,
即a
2-a+4≥6或a
2-a+4≤-6,化簡得a
2-a-2≥0或a
2-a+10≤0,
解得a≤-1或a≥2,
故選B.
點(diǎn)評:本題是有關(guān)函數(shù)性質(zhì)的綜合題,考查了導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,函數(shù)的奇偶性與單調(diào)性關(guān)系、對稱性、周期性等,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想,難度以及綜合程度都很大.