已知不等式
x-2
ax-1
>0的解集為(-1,2),則二項(xiàng)式(ax-
1
x2
6展開式的常數(shù)項(xiàng)是( 。
A、5B、-5C、15D、25
考點(diǎn):二項(xiàng)式定理
專題:二項(xiàng)式定理
分析:由條件解分式不等式求出a的值,再根據(jù)二項(xiàng)展開式的通項(xiàng)公式,令x的系數(shù)等于零求出r的值,可得展開式的常數(shù)項(xiàng).
解答: 解:不等式
x-2
ax-1
>0,即
x-2
-ax+1
0,根據(jù)它的解集為(-1,2),
可得
1
a
=-1,a=-1.
二項(xiàng)式(ax-
1
x2
6=(-x-
1
x2
6=(x+
1
x2
6的展開式式的通項(xiàng)公式為Tr+1=
C
r
6
•x6-3r,
令6-3r=0,求得r=2,可得展開式的常數(shù)項(xiàng)是
C
2
6
=15,
故選:C.
點(diǎn)評(píng):本題主要考查分式不等式的解法,二項(xiàng)展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x∈[1,e],a≥
lnx
x
,
命題q:?x∈R,x2+4x+a=0.若命題“p∧q”是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的不等式x2-4x-5>0的解集是  ( 。
A、{x|x<-1或x>5}
B、{x|x<1或x>5}
C、{x|-1<x<5}
D、{x|1<x<5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AD,AE,BC分別與圓切D,E,F(xiàn)于點(diǎn),延長(zhǎng)AF與圓O交于另一點(diǎn)G,給出下列三個(gè)結(jié)論:
①AD+AE=AB+BC+CA
②△AFB~△ADG
③AF•AG=AD•AE
其中正確結(jié)論的序號(hào)是( 。
A、①②B、②③C、①③D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1F2是雙曲線
x2
4m
-
y2
m
=1(m>0)的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上,且
PF1
PF2
=0,△PF1F2的面積為1,則m=( 。
A、
1
2
B、2
C、1
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)應(yīng)的便分別是a,b,c,A,B為銳角且B<A,sinA=
5
5
,sin2B=
3
5

(1)求角C的值
(2)若b+c=
5
+1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:關(guān)于x的不等式x2+2ax-a>0的解集是R,q:-1≤a≤0,則p是q的( 。
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=
2
5
5
,α∈(
π
2
,π)
(1)求tanα及tan2α;
(2)求
2cos(
π
2
+α)+cos(π-α)
sin(
π
2
-α)+3sin(π+α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合P={x|x≥0},Q={x|
x+1
x-2
≥0},則P∩(∁RQ)=( 。
A、(-∞,1)
B、(-∞,1]
C、(-1,0)
D、[0,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案