2010年上海世博會上展館A與展館B位于觀光路的同側(cè),在觀光路上相距千米的C,D兩點分別測得∠ACB=75°,∠DCB=45°,∠ADC=30°,∠ADB=45°,(A,B,C,D在同一平面內(nèi)),求展館A,B之間的距離.

【答案】分析:在△ACD中根據(jù)∠ACB=75°,∠DCB=45°,∠ADC=30°求得∠DAC,進而求得∠ADC再由正弦定理求得AD;在△BCD中根據(jù)∠DCB,∠ADB,∠ADC求得∠CBD,∠BCD,再由正弦定理求得BD;在△ABD中根據(jù)余弦定理求得AB.
解答:解:在△ACD中,∠DAC=180°-∠ACB-∠BCD-∠ADC=30°,∠ADC=30°,
在△ACD中,
在△BCD中,∠CBD=180°-∠DCB-∠ADB-∠ADC=60°,∠BCD=45°,
在△BCD中,,
在△ABD中,
答:展館A,B之間的距離為千米.
點評:本題主要考查正弦定理和余弦定理的應用.屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某社區(qū)舉辦2010年上海世博會知識宣傳活動,進行現(xiàn)場抽獎,抽獎規(guī)則是:盒中裝有10張大小相同的精美卡片,卡片上分別印有“世博會會徽”或“海寶”(世博會吉祥物)圖案,參加者每次從盒中抽取卡片兩張,若抽到的兩張都是“海寶”卡即可獲獎.
(1)活動開始后,一位參加者問:“盒中有幾張‘海寶’卡?”,主持人笑說:“我只知道從盒中任抽兩張都不是‘海寶’卡的概率是
13
”,求抽獎都獲獎的概率;
(2)在(1)的條件下,現(xiàn)在甲、乙、丙、丁四人依次抽獎,抽后放回,另一個人再抽,求至多有一人獲獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為迎接2010年上海世博會,要設計如圖的一張矩形廣告,該廣告含有大小相等的左中右三個矩形欄目,這三欄的面積之和為60000cm2,四周空白的寬度為10cm,欄與欄之間的中縫空白的寬度為5cm,怎樣確定廣告矩形欄目高與寬的尺寸(單位:cm),能使整個矩形廣告面積最。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某社區(qū)為了選拔若干名2010年上海世博會的義務宣傳員,從社區(qū)300名志愿者中隨機抽取了50名進行世博會有關知識的測試,成績(均為整數(shù))按分數(shù)段分成六組:第一組[40,50),第二組[50,60),…,第六組[90,100],第一、二、三組的人數(shù)依次構成等差數(shù)列如圖是按上述分組方法得到的頻率分布直方圖的一部分.規(guī)定成績不低于66分的志愿者入選為義務宣傳員.
(1)求第二組、第三組的頻率并補充完整頻率分布直方圖;
(2)由所抽取志愿者的成績分布,估計該社區(qū)有多少志愿者可以入選為義務宣傳員.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•閔行區(qū)一模)2010年上海世博會要從小張、小趙、小李、小羅、小王五名志愿者中選派四人分別從事翻譯、導游、禮儀、司機四項不同工作,則小張不從事翻譯工作且小趙不從事司機工作的概率是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某單位舉辦2010年上海世博會知識宣傳活動,進行現(xiàn)場抽獎.盒中裝有9張大小相同的精美卡片,卡片上分別印有“世博會會徽”或“海寶”(世博會吉祥物)圖案;抽獎規(guī)則是:參加者從盒中抽取卡片兩張,若抽到兩張都是“海寶”卡即可獲獎,否則,均為不獲獎.卡片用后放回盒子,下一位參加者繼續(xù)重復進行.
(1)活動開始后,一位參加者問:盒中有幾張“海寶”卡?主持人答:我只知道,從盒中抽取兩張都是“世博會會徽“卡的概率是
518
,求抽獎者獲獎的概率;
(2)現(xiàn)有甲、乙、丙、丁四人依次抽獎,用ξ表示獲獎的人數(shù),求P(ξ=3).

查看答案和解析>>

同步練習冊答案