已知命題p:x2-2x-3≥0,q:x2-(2a-1)x+a(a-1)≥0若p是q的充分而不必要條件,求實數(shù)a的取值范圍.
解:命題p:x2-2x-3≥0,即 {x|x2-2x-3≥0}={x|x≤-1,或 x≥3}.
命題q:x2-(2a-1)x+a(a-1)≥0 即 {x|x2-(2a-1)x+a(a-1)≥0}={x|(x-a)•(x-(a-1))≥0}={x|x≤a-1,或 x≥a}.
若p是q的充分而不必要條件,則有 {x|x≤-1,或 x≥3} 是集合{x|x≤a-1,或 x≥a}的真子集,
∴-1≤a-1,且a≤3,等號不能同時成立.
解得 0≤a≤3,
故答案為[0,3],
分析:由命題p可得{x|x≤-1,或 x≥3},由命題q可得{x|x≤a-1,或 x≥a}.再由題意可得{x|x≤-1,或 x≥3} 是集合{x|x≤a-1,或 x≥a}的真子集,故有-1≤a-1,且a≤3,
等號不能同時成立.由此求得實數(shù)a的取值范圍.
點評:本題主要考查充分條件、必要條件、充要條件的定義,一元二次不等式的解法,屬于基礎(chǔ)題.