19.(1)計算(lg2)2+lg2•lg5+lg5;
(2)計算${(\root{3}{2}×\sqrt{3})^6}-8{(\frac{16}{49})^{-\frac{1}{2}}}-\root{4}{2}×{8^{0.25}}-{(-2016)^0}$.

分析 (1)利用lg2+lg5=1即可得出.
(2)利用指數(shù)冪的運(yùn)算性質(zhì)即可得出.

解答 解:(1)原式=lg2(lg2+lg5)+lg5=lg2+lg5=1.
(2)原式=22×33-$8×(\frac{7}{4})^{-2×(-\frac{1}{2})}$-20.25+3×0.25-1
=108-14-2-1
=91.

點(diǎn)評 本題考查了指數(shù)冪與對數(shù)的運(yùn)算性質(zhì)及其lg2+lg5=1,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若全集U={1,2,3,4,5},集合M={1,2},N={2,3,4},則(∁UM)∩N等于( 。
A.{1}B.{2}C.{3,4}D.{5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知a=${∫}_{0}^{\frac{π}{2}}$(-cosx)dx,則(ax+$\frac{1}{ax}$)9展開式中,x3項(xiàng)的系數(shù)為( 。
A.$\frac{63}{8}$B.$\frac{63}{16}$C.-84D.-$\frac{63}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=|${log_{\frac{1}{2}}}$x|的單調(diào)遞增區(qū)間是( 。
A.$(0,\frac{1}{2}]$B.(1,2]C.[1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.執(zhí)行如圖所示的程序框圖,若輸入n=5,則輸出的結(jié)果是( 。
A.$\frac{5}{6}$B.$\frac{6}{7}$C.$\frac{4}{5}$D.$\frac{1}{30}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知拋物線C:y2=4x,過焦點(diǎn)且與坐標(biāo)軸不平行的直線與該拋物線相交于A、B兩點(diǎn),記線段AB中點(diǎn)為P(x0,y0).
(Ⅰ)若x0=2,求直線AB的斜率;
(Ⅱ)設(shè)線段AB的垂直平分線與x軸,y軸分別相交于點(diǎn)D、E.當(dāng)直線AB的斜率大于$\frac{{\sqrt{3}}}{3}$時,求$\frac{|AB|}{|DE|}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.過拋物線y2=-4x的焦點(diǎn)作直線交拋物線于A(x1,y1),B(x2,y2),若x1+x2=-6,則|AB|為( 。
A.8B.10C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在區(qū)間[-1,3]內(nèi)任取一個實(shí)數(shù)x滿足log2(x-1)>0的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊答案