(04年上海卷)(16分)
如圖,P-ABC是底面邊長(zhǎng)為1的正三棱錐,D、E、F分別為棱長(zhǎng)PA、PB、PC上的點(diǎn), 截面DEF∥底面ABC, 且棱臺(tái)DEF-ABC與棱錐P-ABC的棱長(zhǎng)和相等.(棱長(zhǎng)和是指多面體中所有棱的長(zhǎng)度之和)
(1) 證明:P-ABC為正四面體;
(2) 若PD=PA, 求二面角D-BC-A的大。(結(jié)果用反三角函數(shù)值表示)
(3) 設(shè)棱臺(tái)DEF-ABC的體積為V, 是否存在體積為V且各棱長(zhǎng)均相等的直
平行六面體,使得它與棱臺(tái)DEF-ABC有相同的棱長(zhǎng)和? 若存在,請(qǐng)具體構(gòu)造
出這樣的一個(gè)直平行六面體,并給出證明;若不存在,請(qǐng)說明理由.
解析:【證明】(1) ∵棱臺(tái)DEF-ABC與棱錐P-ABC的棱長(zhǎng)和相等,
∴DE+EF+FD=PD+OE+PF.
又∵截面DEF∥底面ABC,
∴DE=EF=FD=PD=OE=PF,∠DPE=∠EPF=∠FPD=60°, ∴P-ABC是正四面體.
【解】(2)取BC的中點(diǎn)M,連拉PM,DM.AM.
∵BC⊥PM,BC⊥AM, ∴BC⊥平面PAM,BC⊥DM,
則∠DMA為二面角D-BC-A的平面角.
由(1)知,P-ABC的各棱長(zhǎng)均為1,
∴PM=AM=,由D是PA的中點(diǎn),得
sin∠DMA=,∴∠DMA=arcsin.
(3)存在滿足條件的直平行六面體.
棱臺(tái)DEF-ABC的棱長(zhǎng)和為定值6,體積為V.
設(shè)直平行六面體的棱長(zhǎng)均為,底面相鄰兩邊夾角為α,
則該六面體棱長(zhǎng)和為6, 體積為sinα=V.
∵正四面體P-ABC的體積是,∴0<V<,0<8V<1.可知α=arcsim(8V)
故構(gòu)造棱長(zhǎng)均為,底面相鄰兩邊夾角為arcsim(8V)的直平行六面體即滿足要求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(04年上海卷)(14分)
記函數(shù)f(x)=的定義域?yàn)锳, g(x)=lg[(x-a-1)(2a-x)](a<1) 的定義域?yàn)锽.
(1) 求A;
(2) 若BA, 求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(04年上海卷理)(18分)
設(shè)P1(x1,y1), P1(x2,y2),…, Pn(xn,yn)(n≥3,n∈N) 是二次曲線C上的點(diǎn), 且a1=2, a2=2, …, an=2構(gòu)成了一個(gè)公差為d(d≠0) 的等差數(shù)列, 其中O是坐標(biāo)原點(diǎn). 記Sn=a1+a2+…+an.
(1) 若C的方程為=1,n=3. 點(diǎn)P1(3,0) 及S3=255, 求點(diǎn)P3的坐標(biāo);
(只需寫出一個(gè))
(2)若C的方程為(a>b>0). 點(diǎn)P1(a,0), 對(duì)于給定的自然數(shù)n, 當(dāng)公差d變化時(shí), 求Sn的最小值;
. (3)請(qǐng)選定一條除橢圓外的二次曲線C及C上的一點(diǎn)P1,對(duì)于給定的自然數(shù)n,寫出符合條件的點(diǎn)P1, P2,…Pn存在的充要條件,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(04年上海卷文)(本題滿分14分) 第1小題滿分6分, 第2小題滿分8分
如圖, 直線y=x與拋物線y=x2-4交于A、B兩點(diǎn), 線段AB的垂直平分線與直線y=-5交于Q點(diǎn).
(1) 求點(diǎn)Q的坐標(biāo);
(2) 當(dāng)P為拋物線上位于線段AB下方
(含A、B) 的動(dòng)點(diǎn)時(shí), 求ΔOPQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(04年上海卷文)(18分)
設(shè)P1(x1,y1), P1(x2,y2),…, Pn(xn,yn)(n≥3,n∈N) 是二次曲線C上的點(diǎn), 且a1=2, a2=2, …, an=2構(gòu)成了一個(gè)公差為d(d≠0) 的等差數(shù)列, 其中O是坐標(biāo)原點(diǎn). 記Sn=a1+a2+…+an.
(1) 若C的方程為-y2=1,n=3. 點(diǎn)P1(3,0) 及S3=162, 求點(diǎn)P3的坐標(biāo);
(只需寫出一個(gè))
(2) 若C的方程為y2=2px(p≠0). 點(diǎn)P1(0,0), 對(duì)于給定的自然數(shù)n, 證明:
(x1+p)2, (x2+p)2, …,(xn+p)2成等差數(shù)列;
(3) 若C的方程為(a>b>0). 點(diǎn)P1(a,0), 對(duì)于給定的自然數(shù)n, 當(dāng)公差d變化時(shí), 求Sn的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com