如圖,已知半橢圓(a>1,x≥0)的離心率為曲線C2是以半橢圓C1的短軸為直徑的圓在y軸右側的部分,點P(x0,y0)是曲線C2上的任意一點,過點P且與曲線C2相切的直線l與半橢圓C1交于兩個不同點A、B.

(Ⅰ)求a的值及直線l的方程(用x0,y0表示);

(Ⅱ)△OAB的面積是否存在最大值?若存在,求出最大值;若不存在,說明理由.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知橢圓C:
x2
a2
+
y2
2
=1(a>
2
)
的左右焦點分別為F1、F2,點B為橢圓與y軸的正半軸的交點,點P在第一象限內且在橢圓上,且PF2與x軸垂直,
F1P
OP
=5

(1)求橢圓C的方程;
(2)設點B關于直線l:y=-x+n的對稱點E(異于點B)在橢圓C上,求n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•濟寧一模)如圖,已知半橢圓C1
x2
a2
+y2=1(a>1,x≥0)的離心率為
2
2
,曲線C2是以半橢圓C1的短軸為直徑的圓在y軸右側的部分,點P(x0,y0)是曲線C2上的任意一點,過點P且與曲線C2相切的直線l與半橢圓C1交于不同點A,B.
(I)求a的值及直線l的方程(用x0,y0表示);
(Ⅱ)△OAB的面積是否存在最大值?若存在,求出最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知F(c,0)是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點;⊙F:(x-c)2+y2=a2與x軸交于D,E兩點,其中E是橢圓C的左焦點.
(1)求橢圓C的離心率;
(2)設⊙F與y軸的正半軸的交點為B,點A是點D關于y軸的對稱點,試判斷直線AB與⊙F的位置關系;
(3)設直線BF與⊙F交于另一點G,若△BGD的面積為4
3
,求橢圓C的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源:山東省濰坊市2012屆高考考前適應性訓練(三模)數(shù)學文科試題 題型:044

如圖,已知半橢圓的離心率為曲線C2是以半橢圓C1的短軸為直徑的圓在y軸右側的部分,點P(x0,y0)是曲線C2上的任意一點,過點P且與曲線C2相切的直線l與半橢圓C1交于兩個不同點A、B.

(Ⅰ)求直線l的方程(用x0,y0表示);

(Ⅱ)求弦|AB|的最大值.

查看答案和解析>>

同步練習冊答案