設(shè)a,b分別是直線(xiàn)l1,l2的方向向量,根據(jù)下列條件判斷l(xiāng)1與l2的位置關(guān)系:
(1)a=(2,3,-1),b=(-6,-9,3);
(2)a=(5,0,2),b=(0,4,0);
(3)a=(-2,1,4),b=(6,3,3).
探究:直線(xiàn)方向向量與直線(xiàn)位置關(guān)系間的內(nèi)在聯(lián)系是:l1∥l2a∥b,l1⊥l2a⊥b,據(jù)此可判斷兩直線(xiàn)的位置關(guān)系.
解:(1)∵a=(2,3,-1),b=(-6,-9,3),
∴a=-b,∴a∥b,∴l(xiāng)1∥l2.
(2)∵a=(5,0,2),b=(0,4,0),∴a·b=0,∴a⊥b,∴l(xiāng)1⊥l2.
(3)∵a=(-2,1,4),b=(6,3,3),
∴a與b不共線(xiàn),也不垂直,
∴l(xiāng)1與l2的位置關(guān)系是相交或異面.
規(guī)律總結(jié):解答上述三類(lèi)問(wèn)題的關(guān)鍵:一是要搞清直線(xiàn)方向向量、平面法向量和直線(xiàn)、平面位置關(guān)系之間的內(nèi)存聯(lián)系;二是要熟練掌握判斷兩向量共線(xiàn)、垂直的重要條件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2
| ||
5 |
2
| ||
5 |
AB |
20 |
OP |
OA |
OB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2
| ||
5 |
2
| ||
5 |
AB |
20 |
OP |
OA |
OB |
DM |
DN |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-2-1蘇教版 蘇教版 題型:044
設(shè)a,b分別是直線(xiàn)l、l2的方向向量,根據(jù)下列條件判斷l(xiāng)1、l2的位置關(guān)系.
(1)a=(2,-1,-2),b=(6,-3,-6);
(2)a=(1,2,-2),b=(-2,3,2);
(3)a=(0,0,1),b=(0,0,-3).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)求軌跡C的方程;
(2)M,N是曲線(xiàn)C上的任意兩點(diǎn),且直線(xiàn)MN不與y軸垂直,線(xiàn)段MN的中垂線(xiàn)l交y軸于點(diǎn)E(0,y0),求y0的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
①a=(2,3,-1),b=(-6,-9,3);
②a=(5,0,2),b=(0,4,0);
③a=(-2,1,4),b=(6,3,3).
(2)設(shè)u、v分別是平面α、β的法向量,根據(jù)下列條件判斷α、β的位置關(guān)系:
①u(mài)=(1,-1,2),v=(3,2,-);
②u=(0,3,0),v=(0,-5,0);
③u=(2,-3,4),v=(4,-2,1).
(3)設(shè)u是平面α的法向量,a是直線(xiàn)l的方向向量,根據(jù)下列條件判斷α和l的位置關(guān)系:
①u(mài)=(2,2,-1),a=(-3,4,2);
②u=(0,2,-3),a=(0,-8,12);
③u=(4,1,5),a=(2,-1,0).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com