A. | [-$\frac{3}{2}$,6] | B. | [-$\frac{3}{2}$,-1] | C. | [-1,6] | D. | [-6,$\frac{3}{2}$] |
分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.
解答 解:由約束條件$\left\{\begin{array}{l}{2x+y≤4}\\{4x-y≥-1}\end{array}\right.$作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{2x+y=4}\\{4x-y=-1}\end{array}\right.$,解得A($\frac{1}{2}$,3),
化目標(biāo)函數(shù)z=3x-y為y=3x-z,
由圖可知,當(dāng)直線y=3x-z過點(diǎn)A時(shí),直線在y軸上的截距最大,z有最小值為$\frac{3}{2}-3=-\frac{3}{2}$.
∴z=3x-y的取值范圍是[-$\frac{3}{2}$,+∞).
故選:A.
點(diǎn)評(píng) 本題考查解得的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(log3π)>f(log2$\sqrt{3}$)>f(log3$\sqrt{2}$) | B. | f(log2$\sqrt{3}$)>f(log3$\sqrt{2}$)>f(log3π) | ||
C. | f(log3$\sqrt{2}$)>f(log2$\sqrt{3}$)>f(log3π) | D. | f(log2$\sqrt{3}$)>f(log3π)>f(log3$\sqrt{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 720種 | B. | 240種 | C. | 120種 | D. | 96種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 各側(cè)面都是等腰三角形 | B. | 側(cè)棱長(zhǎng)度相等且底面是菱形 | ||
C. | 所有棱長(zhǎng)都相等 | D. | 底面是三角形且三條側(cè)棱兩兩垂直 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\sqrt{2}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,1] | B. | [0,1) | C. | [0,1)∪(1,4] | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=3-x | B. | f(x)=x2-x | C. | f(x)=-$\frac{1}{x+1}$ | D. | f(x)=-|x| |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com