已知矩陣,A的一個(gè)特征值,屬于λ的特征向量是,求矩陣A與其逆矩陣.

 

【答案】

 A-1 =

【解析】

試題分析:①由,得,解得,

A-1 =

考點(diǎn):矩陣特征值特征向量

點(diǎn)評(píng):設(shè)A是n階方陣,如果存在數(shù)m和非零n維列向量x,使得Ax=mx成立,則稱(chēng)m是A的一個(gè)特征值

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知矩陣  ,A的一個(gè)特征值,其對(duì)應(yīng)的特征向量是.

   (Ⅰ)求矩陣

(Ⅱ)若向量,計(jì)算的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省南安一中高二下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題

(本小題滿(mǎn)分12分)
(1)(本小題滿(mǎn)分5分)選修4-2:矩陣與變換。已知矩陣,A的一個(gè)特征值,屬于λ的特征向量是,求矩陣A與其逆矩陣.
(2) (本小題滿(mǎn)分7分)選修4—4:坐標(biāo)系與參數(shù)方程
已知直線(xiàn)的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,在曲線(xiàn)上求一點(diǎn),使它到直線(xiàn)的距離最小,并求出該點(diǎn)坐標(biāo)和最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆福建省福州市第八中學(xué)高三第五次質(zhì)量檢查數(shù)學(xué)理卷 題型:解答題

(1)(本小題滿(mǎn)分7分)
選修4-4:矩陣與變換
已知矩陣 ,A的一個(gè)特征值,其對(duì)應(yīng)的特征向量是.
(Ⅰ)求矩陣
(Ⅱ)求直線(xiàn)在矩陣M所對(duì)應(yīng)的線(xiàn)性變換下的像的方程
(2)
(本小題滿(mǎn)分7分)選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線(xiàn)C的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線(xiàn)l的參數(shù)方程是:求直線(xiàn)l與曲線(xiàn)C相交所成的弦的弦長(zhǎng).
((3)(本小題滿(mǎn)分7分)
選修4-5:不等式選講解不等式∣2x-1∣<∣x∣+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省福州市高三第五次質(zhì)量檢查數(shù)學(xué)理卷 題型:解答題

(1)(本小題滿(mǎn)分7分)

選修4-4:矩陣與變換

已知矩陣  ,A的一個(gè)特征值,其對(duì)應(yīng)的特征向量是.

(Ⅰ)求矩陣;

(Ⅱ)求直線(xiàn)在矩陣M所對(duì)應(yīng)的線(xiàn)性變換下的像的方程

 

 

(2)

(本小題滿(mǎn)分7分)選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線(xiàn)C的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線(xiàn)l的參數(shù)方程是:,求直線(xiàn)l與曲線(xiàn)C相交所成的弦的弦長(zhǎng).

((3)(本小題滿(mǎn)分7分)

選修4-5:不等式選講 解不等式∣2x-1∣<∣x∣+1

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案