在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,已知sinA=
2
2
3

(1)求tan2
B+C
2
+sin2
A
2
的值;
(2)若a=2,S△ABC=
2
,求b的值.
分析:(1)先根據(jù)角A的范圍和正弦值求出余弦值,然后根據(jù)同角三角函數(shù)的基本關(guān)系和二倍角公式對tan2
B+C
2
+sin2
A
2
進(jìn)行化簡,最后代入角A的余弦值即可.
(2)先根據(jù)三角形的面積公式求出b與c的乘積,然后將數(shù)據(jù)代入余弦定理a2=b2+c2-2bccosA即可求出b的值.
解答:解:(1)因?yàn)殇J角△ABC中,A+B+C=π,sinA=
2
2
3

所以cosA=
1
3
,
tan2
B+C
2
+sin2
A
2
=
sin2
B+C
2
cos2
B+C
2
+sin2
A
2

=
1-cos(B+C)
1+cos(B+C)
+
1
2
(1-cosA)=
1+cosA
1-cosA
+
1
3
=
7
3

(2)因?yàn)?span>S△ABC=
2
,又S△ABC=
1
2
bcsinA=
1
2
bc•
2
2
3
,則bc=3.
將a=2,cosA=
1
3
,c=
3
b
代入余弦定理:a2=b2+c2-2bccosA中得b4-6b2+9=0
解得b=
3
點(diǎn)評:本題主要考查同角三角函數(shù)的基本關(guān)系和、倍角公式、三角形的面積公式以及余弦定理的應(yīng)用.三角函數(shù)部分公式比較多,不容易記憶,一定要強(qiáng)化記憶,這樣才能做到做題時(shí)的游刃有余.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

己知在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,且tanC=
aba2+b2-c2

(Ⅰ)求角C大小;
(Ⅱ)當(dāng)c=1時(shí),求a2+b2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•張掖模擬)在銳角△ABC中,角A、B、C所對的邊分別為a、b、c.且
a-c
b-c
=
sinB
sinA+sinC

(1)求角A的大小及角B的取值范圍;
(2)若a=
3
,求b2+c2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
OP
=(2sin
x
2
,-1),
OQ
=(cosx+f(x),sin(
π
2
-
x
2
)),且
OP
OQ

(1)求函數(shù)f(x)的表達(dá)式,并指出f(x)的單調(diào)遞減區(qū)間;
(2)在銳角△ABC中,角A、B、C所對的邊分別為a,b,c,且f(A)=-
2
,bc=8
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,角A,B,C所對的邊分別為a,b,c.已知b2=ac且sinAsinC=
34

(Ⅰ)求角B的大。
(Ⅱ)求函數(shù)f(x)=sin(x-B)+sinx(0≤x<π)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,角A,B,C所對的邊分別為a,b,c.已知cos2C=-
3
4

(Ⅰ)求sinC;
(Ⅱ)當(dāng)c=2a,且b=3
7
時(shí),求a及△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案