過橢圓C: (a>b>0)的一個焦點且垂直于x軸的直線與橢圓C交于點(,1).(1)求橢圓C的方程;(2)設(shè)過點P(4,1)的動直線與橢圓C相交于兩個不同點A、B,與直線2x+y-2=0交于點Q,若,求λ+μ的值

(Ⅰ)    (Ⅱ)  


解析:

(1)由題意得 解得.

故橢圓的方程是.                                     …4分

(2)∵過點的動直線與橢圓相交于兩個不同點、,∴存在.

設(shè)直線的方程為,.

化簡得:

由△,得  ……①

滿足解得 (由①可知)

,得:

,∴,故

,否則此時、重合,與題意不符,故.

.    …12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)分別以雙曲線G:
x2
2
-
y2
2
=1
的焦點為頂點,以雙曲線G的頂點為焦點作橢圓C,過橢圓C的右焦點作與x、y兩軸均不垂直的直線l交橢圓于A、B兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)在y軸上是否存在點N(0,n),使得(
NA
+
NB
)•
AB
=0
?若存在,求出n的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點分別為F1,F(xiàn)2,上頂點為A,過點A與AF2垂直的直線交x軸負半軸于點Q,且2
F1F2
+
F2Q
=0
,若過A,Q,F(xiàn)2三點的圓恰好與直線l:x-
3
y-3=0
相切.過定點M(0,2)的直線l1與橢圓C交于G,H兩點(點G在點M,H之間).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l1的斜率k>0,在x軸上是否存在點P(m,0),使得以PG,PH為鄰邊的平行四邊形是菱形.如果存在,求出m的取值范圍,如果不存在,請說明理由;
(Ⅲ)若實數(shù)λ滿足
MG
MH
,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(-2,0),B(2,0)
(1)過點A斜率
3
3
的直線l,交以A,B為焦點的雙曲線于M,N兩點,若線段MN的中點到y(tǒng)軸的距離為1,求該雙曲線的方程;
(2)以A,B為頂點的橢圓經(jīng)過點C(1,
3
2
),過橢圓的上頂點G作直線s,t,使s⊥t,直線s,t分別交橢圓于點P,Q(P,Q與上頂點G不重合).求證:PQ必過y軸上一定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直線L:x=my+1過橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點F,且交橢圓C于A、B兩點,點A、B在直線G:x=a2上的射影依次為點D、E.
(1)若拋物線x2=4
3
y
的焦點為橢圓C的上頂點,求橢圓C的方程;
(2)若N(
a2+1
2
,0)
為x軸上一點,求證:
AN
NE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009高考遼寧省數(shù)學(xué)模擬試題分類匯編:圓錐曲線 題型:044

如圖,已知直線L:x=my+1過橢圓C:(a>b>0)的右焦點F,且交橢圓C于A、B兩點,點A、B在直線G:x=a2上的射影依次為點D、E.

(1)若拋物線x2=4y的焦點為橢圓C的上頂點,求橢圓C的方程;

(2)(理)連接AE、BD,試探索當(dāng)m變化時,直線AE、BD是否相交于一定點N?若交于定點N,請求出N點的坐標(biāo),并給予證明;否則說明理由.

(文)若N()為x軸上一點,求證:

查看答案和解析>>

同步練習(xí)冊答案