如圖,用4種不同的顏色對圖中5個區(qū)域涂色( 4種顏色全部使用 ),要求每個區(qū)域涂一種顏色,相鄰的區(qū)域不能涂相同的顏色,則不同的涂色方法有
 
 種.(用數(shù)字作答)
考點:排列、組合及簡單計數(shù)問題
專題:應(yīng)用題,排列組合
分析:本題是一個分步計數(shù)問題,首先給最左邊一塊涂色,有24種結(jié)果,再給左邊第二塊涂色,最后涂第三塊,根據(jù)分步計數(shù)原理得到結(jié)果.
解答: 解:由題意知本題是一個分步計數(shù)問題,第一步:涂區(qū)域1,有4種方法;第二步:涂區(qū)域2,有3種方法;第三步:涂區(qū)域4,有2種方法(此前三步已經(jīng)用去三種顏色);第四步:涂區(qū)域3,分兩類:第一類,3與1同色,則區(qū)域5涂第四種顏色;第二類,區(qū)域3與1不同色,則涂第四種顏色,此時區(qū)域5就可以涂區(qū)域1或區(qū)域2或區(qū)域3中的任意一種顏色,有3種方法.所以,不同的涂色種數(shù)有4×3×2×(1×1+1×3)=96種.
故答案為:96.
點評:本題考查計數(shù)原理的應(yīng)用,本題解題的關(guān)鍵是注意條件中所給的相同的區(qū)域不能用相同的顏色,因此在涂第二塊時,要不和第一塊同色.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax(x≥0)
x+1(x<0)
(a>0且a≠1);
(1)若f(1)=2,求a的值,并作出f(x)的圖象;
(2)當(dāng)x∈R時,恒有f(x)≤f(0),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角△ABC中內(nèi)角A、B、C的對邊分別為a、b、c,a2+b2=6abcosC,且sin2C=2sinAsinB.
(Ⅰ)求角C的值;
(Ⅱ)設(shè)函數(shù)f(x)=sin(ωx-
π
6
)-cosωx(ω>0),且f(x)圖象上相鄰兩最高點間的距離為π,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某旅游景點預(yù)計2013年1月份起前x個月的旅游人數(shù)的和p(x)(單位:萬人)與x的關(guān)系近似地滿足p(x)=
1
2
x(x+1).(39-2x),(x∈N*,且x≤12).已知第x月的人均消費額q(x)(單位:元)與x的近似關(guān)系是
q(x)=
35-2x(x∈N*,且1≤x≤6)
160
x
(x∈N*,且7≤x≤12)

(Ⅰ)寫出2013年第x月的旅游人數(shù)f(x)(單位:人)與x的函數(shù)關(guān)系式;
(Ⅱ)試問2013年第幾月旅游消費總額最大,最大月旅游消費總額為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,假命題的有
 

(1)兩個復(fù)數(shù)不能比較大小;
(2)若(x2-1)+(x2+3x+2)i是純虛數(shù),則實數(shù)x=
 
+
-
1;
(3)若a,b是兩個相等的實數(shù),則(a-b)+(a+b)i是純虛數(shù);
(4 )z∈R的一個充要條件是z=
.
z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a3+a7=25,則a2+a4+a6+a8=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若B={-1,3,5},下列集合A,使得f:x→2x-1是A到B的映射的是
 
(填序號)
①A={0,2,3};②A={-3,5,9}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程
|x|
x+2
=kx有三個不同的實根,則實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量|
a
|=
3
,|
b
|=2,
a
b
的夾角為30°,則
a
b
=
 

查看答案和解析>>

同步練習(xí)冊答案