(2012•日照一模)在如圖所示的多面體中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中點.
(1)求證:BD⊥EG;
(2)求平面DEG與平面DEF所成銳二面角的余弦值.
分析:解法1
(1)證明BD⊥EG,只需證明EG⊥平面BHD,證明DH⊥EG,BH⊥EG即可;
(2)先證明∠GMH是二面角G-DE-F的平面角,再在△GMH中,利用余弦定理,可求平面DEG與平面DEF所成銳二面角的余弦值;
解法2
(1)證明EB,EF,EA兩兩垂直,以點E為坐標原點,EB,EF,EA分別為x,y,z軸,建立空間直角坐標系用坐標表示點與向量,證明
BD
EG
=0
,可得BD⊥EG;
(2)由已知得
EB
=(2,0,0)
是平面DEF的法向量,求出平面DEG的法向量
n
=(1,-1,1)
,利用向量的夾角公式,可求平面DEG與平面DEF所成銳二面角的余弦值.
解答:解法1
(1)證明:∵EF⊥平面AEB,AE?平面AEB,∴EF⊥AE,
又AE⊥EB,EB∩EF=E,EB,EF?平面BCFE,
∴AE⊥平面BCFE.…(2分)
過D作DH∥AE交EF于H,則DH⊥平面BCFE.
∵EG?平面BCFE,
∴DH⊥EG.…(4分)
∵AD∥EF,DH∥AE,∴四邊形AEHD平行四邊形,
∴EH=AD=2,
∴EH=BG=2,又EH∥BG,EH⊥BE,
∴四邊形BGHE為正方形,
∴BH⊥EG,…(6分)
又BH∩DH=H,BH?平面BHD,DH?平面BHD,
∴EG⊥平面BHD.…(7分)
∵BD?平面BHD,
∴BD⊥EG.…(8分)
(2)解:∵AE⊥平面BCFE,AE?平面AEFD,∴平面AEFD⊥平面BCFE
由(1)可知GH⊥EF,∴GH⊥平面AEFD
∵DE?平面AEFD,∴GH⊥DE…(9分)
取DE的中點M,連接MH,MG
∵四邊形AEHD是正方形,∴MH⊥DE
∵MH∩GH=H,MH?平面GHM,GH?平面GHM,∴DE⊥平面GHM,∴DE⊥MG
∴∠GMH是二面角G-DE-F的平面角,…(12分)
在△GMH中,GH=2,MH=
2
,MG=
6
,∴cos∠GMH=
2
6
=
3
3
…(13分)
∴平面DEG與平面DEF所成銳二面角的余弦值為
3
3
.…(14分)
解法2
(1)證明:∵EF⊥平面AEB,AE?平面AEB,BE?平面AEB,∴EF⊥AE,EF⊥BE,
又AE⊥EB,∴EB,EF,EA兩兩垂直.…(2分)
以點E為坐標原點,EB,EF,EA分別為x,y,z軸,建立如圖所示的空間直角坐標系.
由已知得,A(0,0,2),B(2,0,0),C(2,4,0),F(xiàn)(0,3,0),D(0,2,2),G(2,2,0).…(4分)
EG
=(2,2,0)
,
BD
=(-2,2,2)
,…(6分)
BD
EG
=-2×2+2×2=0
,…(7分)
∴BD⊥EG.…(8分)
(2)解:由已知得
EB
=(2,0,0)
是平面DEF的法向量.…(9分)
設平面DEG的法向量為
n
=(x,y,z)
,
ED
=(0,2,2),
EG
=(2,2,0)

ED
n
=0
EG
n
=0
,即
y+z=0
x+y=0
,令x=1,得
n
=(1,-1,1)
.…(12分)
設平面DEG與平面DEF所成銳二面角的大小為θ,
cosθ=|cos<
n
,
EB
>|=
|
n
EB
|
|
n
|•|
EB
|
=
2
2
3
=
3
3
…(13分)
∴平面DEG與平面DEF所成銳二面角的余弦值為
3
3
.…(14分)
點評:本題考查線線垂直,考查面面角,考查利用空間向量解決立體幾何問題,兩法并舉,注意體會.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•日照一模)給出下列四個命題:
①命題“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②若0<a<1,則函數(shù)f(x)=x2+ax-3只有一個零點;
③函數(shù)y=sin(2x-
π
3
)
的一個單調(diào)增區(qū)間是[-
π
12
12
]
;
④對于任意實數(shù)x,有f(-x)=f(x),且當x>0時,f′(x)>0,則當x<0時,f′(x)<0.
其中真命題的序號是
①③④
①③④
(把所有真命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•日照一模)已知定義在R上奇函數(shù)f(x)滿足①對任意x,都有f(x+3)=f(x)成立;②當x∈[0,
3
2
]
f(x)=
3
2
-|
3
2
-2x|
,則f(x)=
1
|x|
在[-4,4]上根的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•日照一模)已知f(x)=
m
n
,其中
.
m
=(sinωx+cosωx,
3
cosωx)
,
.
n
=(cosωx-sinωx,2sinωx)
(ω>0).若f(x)圖象中相鄰的兩條對稱軸間的距離不小于π.
(I)求ω的取值范圍;
(II)在△ABC中,a,b,c分別為角A,B,C的對邊,a=
7
,S△ABC=
3
2
,當ω取最大值時,f(A)=1,求b,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•日照一模)給出下列四個命題:
①命題“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②若0<a<1,則函數(shù)f(x)=x2+ax-3只有一個零點;
③函數(shù)y=2
2
sinxcosx
[-
π
4
,
π
4
]
上是單調(diào)遞減函數(shù);
④若lga+lgb=lg(a+b),則a+b的最小值為4.
其中真命題的序號是
①④
①④
(把所有真命題的序號都填上).

查看答案和解析>>

同步練習冊答案