13.如圖是某幾何體的三視圖,則該幾何體的體積是( 。
A.3B.$\frac{9}{2}$C.9D.27

分析 根據(jù)該幾何體的三視圖所示,該幾何體是底面為正方形的四棱錐,其底面為正方形,面積可求;高為3,根據(jù)棱錐體積即可求.

解答 解:根據(jù)該幾何體的三視圖所示,該幾何體是底面為正方形的四棱錐,其底面為正方形,面積S=長(zhǎng)×寬=3×3=9,棱錐高為3.
則四棱錐的體積:${V}_{錐}=\frac{1}{3}Sh$=$\frac{1}{3}×9×3=9$
故選:C.

點(diǎn)評(píng) 本題考查了對(duì)三視圖的認(rèn)識(shí)和理解,知道各邊長(zhǎng)的投影關(guān)系.同時(shí)考查錐體的體積計(jì)算.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若A={x|y=log3(x-2)},B={y|y=-|x|},則A∪∁B=( 。
A.(0,+∞)B.[0,+∞)C.(2,+∞)D.[0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{6}}}{3}$,以橢圓的四個(gè)頂點(diǎn)為頂點(diǎn)的四邊形的面積為$4\sqrt{3}$.
(1)求橢圓的方程;
(2)斜率為k的直線l過(guò)橢圓的右焦點(diǎn)F,且與橢圓交與A,B兩點(diǎn),過(guò)線段AB的中點(diǎn)與AB垂直的直線交直線x=3于P點(diǎn),若△ABP為等邊三角形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合A={1,2,m2},且B={3,2},B⊆A,則m=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$±\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=ex,g(x)=ax2+bx+c.
(1)若f(x)的圖象與g(x)的圖象的一個(gè)公共點(diǎn)在y軸上,且在該店處兩條曲線的切線相同,求b和c的值;
(2)若a=c=1,b=0,試著比較f(x)與g(x)的大小,并說(shuō)明理由;
(3)若函數(shù)t(x)與函數(shù)f(x)的圖象關(guān)于直線y=x對(duì)稱(chēng),且直線y=g′(x)是函數(shù)t(x)圖象的切線,求a+b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知數(shù)列{an}滿(mǎn)足$2{a_{n+1}}+{a_n}=3({n∈{N^*}})$,且a1=4,其前n項(xiàng)和為Sn,則滿(mǎn)足不等式$|{{S_n}-n-2}|<\frac{1}{30}$的最小整數(shù)n是( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意的正整數(shù)m+n=1,都有an=5Sn+1成立,記${b_n}=\frac{{4+{a_n}}}{{1-{a_n}}}\;(n∈{N^*})$.
(1)求數(shù)列{an}與數(shù)列{bn}的通項(xiàng)公式;
(2)記${C_n}={b_{2n}}-{b_{2n-1}}(n∈{N^*})$,設(shè)數(shù)列{cn}的前n項(xiàng)和為T(mén)n,求證:對(duì)任意正整數(shù)n都有${T_n}<\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在銳角△ABC中,已知BC=1,B=2A,則AC的取值范圍是( 。
A.$({0,\sqrt{2}})$B.$({0,\sqrt{3}})$C.$({\sqrt{2},\sqrt{3}})$D.$({\sqrt{3},2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若直線x-3y-k=0與直線9y=9kx+1沒(méi)有公共點(diǎn),則k的值為$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案