命題p:?x∈R,x2+2x>0,則命題p的否定為
?x∈R,x2+2x≤0
?x∈R,x2+2x≤0
分析:“全稱命題”的否定是“特稱命題”.根據(jù)全稱命題的否定寫出即可.
解答:解:命題“?x∈R,x2+2x>0”是全稱命題,其否定是:?x∈R,x2+2x≤0.
故答案為:?x∈R,x2+2x≤0.
點評:命題的否定即命題的對立面.“全稱量詞”與“存在量詞”正好構(gòu)成了意義相反的表述.如“對所有的…都成立”與“至少有一個…不成立”;“都是”與“不都是”等,所以“全稱命題”的否定一定是“存在性命題”,“存在性命題”的否定一定是“全稱命題”.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

1、已知命題 p:?x∈R,x≥1,那么命題?p為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2、已知命題p:?x∈R,|x|≥0,那么命題?p為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題 p:?x∈R,x≥2,那么命題?p為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:“?x∈R,|x-2|<3”,那么?p是( 。
A、?x∈R,|x-2|>3B、?x∈R,|x-2|≥3C、?x∈R,|x-2|<3D、?x∈R,|x-2|≥3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知命題p:?x∈R,|x|≥0,那么命題?p為( 。
A.?x∈R,|x|≤0B.?x∈R,|x|≤0C.?x∈R,|x|<0D.?x∈R,|x|<0

查看答案和解析>>

同步練習冊答案