4.若函數(shù)f(x)=ax-$\frac{1}{x}$在(0,1]上單調(diào)遞增,那么實數(shù)a的取值范圍是a≥-1.

分析 若函數(shù)f(x)=ax-$\frac{1}{x}$在(0,1]上單調(diào)遞增,則f′(x)=a+$\frac{1}{{x}^{2}}$≥0在(0,1]上恒成立,即a≥-$\frac{1}{{x}^{2}}$在(0,1]上恒成立,進而得到答案.

解答 解:∵函數(shù)f(x)=ax-$\frac{1}{x}$,
∴f′(x)=a+$\frac{1}{{x}^{2}}$,
若函數(shù)f(x)=ax-$\frac{1}{x}$在(0,1]上單調(diào)遞增,
則f′(x)=a+$\frac{1}{{x}^{2}}$≥0在(0,1]上恒成立,
即a≥-$\frac{1}{{x}^{2}}$在(0,1]上恒成立,
即a≥-1,
故實數(shù)a的取值范圍是:a≥-1
故答案為:a≥-1

點評 本題考查的知識點是利用導數(shù)研究函數(shù)的單調(diào)性,函數(shù)恒成立問題,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知集合A={x|x2+x-6=0},B={x|ax+1=0},若A∪B=A,求實數(shù)a的取值組成的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知集合A={-3},B={x|ax+1=0},若B⊆A,求實數(shù)a的取值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某校高三(1)班全體女生的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題:
(1)求高三(1)班全體女生的人數(shù);
(2)求分數(shù)在[80,90)之間的女生人數(shù);并計算頻率分布直方圖中[80,90)間的矩形的高;
(3)估計高三(1)班全體女生的一次數(shù)學測試成績的平均數(shù),中位數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.定義符號函數(shù)sgn(x)=$\left\{\begin{array}{l}{\stackrel{1,x>0}{0,x=0}}\\{-1,x<0}\end{array}\right.$,
設f(x)=$\frac{sgn(\frac{1}{2}-x)+1}{2}$•f1(x)+$\frac{sgn(\frac{1}{2}-x)+1}{2}$•f2(x),x∈[0,1],其中${f_1}(x)=x+\frac{1}{2}$,f2(x)=2(1-x),若$f({f(a)})∈[{0,\frac{1}{2}}]$,則實數(shù)a的取值范圍是{$\frac{1}{2}$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在數(shù)列{an}中,a1=$\frac{1}{2}$,對任意的n∈N*,都有an+1an=an-an+1成立.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{$\frac{{a}_{n}}{n}$}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.過點$(2\sqrt{2},0)$直線l與曲線$y=\sqrt{4-{x^2}}$交于A,B兩點,O為坐標原點,當△ABO的面積取最大值時,直線l的斜率等于-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.等比數(shù)列{an}中,a1=1,a4=8,則公比q等于( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.命題P:y=$\sqrt{{x}^{2}+mx+4}$的定義域為R;命題q:方程$\frac{x^2}{3-m}+\frac{y^2}{4-m}=1$表示橢圓.
(1)求P真且q真時的實數(shù)m的取值范圍.
(2)若p∨q為真,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案