【題目】如圖,在三棱柱ABCA1B1C1中,E,F分別為A1C1BC的中點(diǎn),M,N分別為A1BA1C的中點(diǎn).求證:

1MN∥平面ABC;

2EF∥平面AA1B1B.

【答案】1)證明見解析;(2)證明見解析;

【解析】

1)推導(dǎo)出MNBC,由此能證明MN∥平面ABC.

2)取A1B1的中點(diǎn)D,連接DEBD.推導(dǎo)出四邊形DEFB是平行四邊形,從而EFBD,由此能證明EF∥平面AA1B1B.

證明:(1)∵M、N分別是A1BA1C中點(diǎn).

MNBC

BC平面ABC,MN平面ABC,

MN∥平面ABC.

2)如圖,取A1B1的中點(diǎn)D,連接DE,BD.

DA1B1中點(diǎn),EA1C1中點(diǎn),

DEB1C1,

在三棱柱ABCA1B1C1中,側(cè)面BCC1B1是平行四邊形,

BCB1C1BCB1C1,∵FBC的中點(diǎn),∴BFB1C1,

DEBFDEBF,∴四邊形DEFB是平行四邊形,∴EFBD

BD平面AA1B1B,EF平面AA1B1B

EF∥平面AA1B1B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:①函數(shù);

②向量,且ω0,;

③函數(shù)的圖象經(jīng)過點(diǎn)

請在上述三個條件中任選一個,補(bǔ)充在下面問題中,并解答.

已知 ,且函數(shù)fx)的圖象相鄰兩條對稱軸之間的距離為.

1)若,且,求fθ)的值;

2)求函數(shù)fx)在[0,2π]上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電動車售后服務(wù)調(diào)研小組從汽車市場上隨機(jī)抽取20輛純電動汽車調(diào)查其續(xù)駛里程(單次充電后能行駛的最大里程),被調(diào)查汽車的續(xù)駛里程全部介于50公里和300公里之間,將統(tǒng)計結(jié)果分成5組:,繪制成如圖所示的頻率分布直方圖.

1)求續(xù)駛里程在的車輛數(shù);

2)求續(xù)駛里程的平均數(shù);

3)若從續(xù)駛里程在的車輛中隨機(jī)抽取2輛車,求其中恰有一輛車的續(xù)駛里程在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】請用空間向量求解已知正四棱柱中,, 分別是棱,上的點(diǎn),且滿足

求異面直線,所成角的余弦值;

求面與面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是拋物線上的一點(diǎn),過點(diǎn)作兩條直線,分別與拋物線相交于異于點(diǎn)兩點(diǎn).

若直線過點(diǎn)的重心軸上,求直線的斜率;

若直線的斜率為1的垂心軸上,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面四邊形中, , ,將沿折起,使得平面平面,如圖.

(1)求證: ;

(2)若中點(diǎn),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若, ,求函數(shù)圖像上任意一點(diǎn)處切線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)為偶函數(shù),求實(shí)數(shù)的值;

2)若,求函數(shù)的單調(diào)遞減區(qū)間;

3)當(dāng)時,若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是各項均為正數(shù)的等比數(shù)列,.

1)求的通項公式;

2)設(shè),求數(shù)列的前n項和.

查看答案和解析>>

同步練習(xí)冊答案