【題目】下列說(shuō)法正確的是( 。
A.命題“x∈R,使得x2+x+1<0”的否定是:“x∈R,x2+x+1>0”
B.命題“若x2﹣3x+2=0,則x=1或x=2”的否命題是:“若x2﹣3x+2=0,則x≠1或x≠2”
C.直線l1:2ax+y+1=0,l2:x+2ay+2=0,l1∥l2的充要條件是
D.命題“若x=y,則sinx=siny”的逆否命題是真命題
【答案】D
【解析】解:命題“x∈R,使得x2+x+1<0”的否定是:“x∈R,x2+x+1≥0”,故A錯(cuò)誤;
命題“若x2﹣3x+2=0,則x=1或x=2”的否命題是:“若x2﹣3x+2≠0,則x≠1且x≠2”,故B錯(cuò)誤;
直線l1:2ax+y+1=0,l2:x+2ay+2=0,l1∥l2的充要條件是a=± ,故C錯(cuò)誤;
命題“若x=y,則sinx=siny”是真命題,故其逆否命題是真命題,故D正確.
所以答案是:D
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識(shí),掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知| |=4,| |=3,(2 ﹣3 )(2 + )=61.
(1)求 與 的夾角θ;
(2)求| + |和| ﹣ |.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=sin(ωx+φ)(x∈R,ω>0,0≤φ<2π)的部分圖象如圖,則函數(shù)表達(dá)式為;若將該函數(shù)向左平移1個(gè)單位,再保持縱坐標(biāo)不變,橫坐標(biāo)縮短為原來(lái)的 倍得到函數(shù)g(x)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: =1(a>b>0),F(xiàn)(﹣c,0)為其左焦點(diǎn),點(diǎn)P(﹣ ,0),A1 , A2分別為橢圓的左、右頂點(diǎn),且|A1A2|=4,|PA1|= |A1F|.
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)A1作兩條射線分別與橢圓交于M、N兩點(diǎn)(均異于點(diǎn)A1),且A1M⊥A1N,證明:直線MN恒過(guò)x軸上的一個(gè)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}與{bn}滿足an+1﹣an=2(bn+1﹣bn),n∈N+ , bn=2n﹣1,且a1=2.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè) ,Tn為數(shù)列{cn}的前n項(xiàng)和,求Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等比數(shù)列{an}的前n項(xiàng)和為Sn , 且 (a∈N+).
(1)求a的值及數(shù)列{an}的通項(xiàng)公式;
(2)設(shè) ,求{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了豎一塊廣告牌,要制造三角形支架,如圖,要求∠ACB=60°,BC的長(zhǎng)度大于1米,且AC比AB長(zhǎng)0.5米,為了穩(wěn)固廣告牌,要求AC越短越好,則AC最短為( 。
A.(1+ )米
B.2米
C.(1+ )米
D.(2+ )米
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn),極軸與x軸的正半軸重合,曲線C的極坐標(biāo)方程為ρ2cos2θ+3ρ2sin2θ=3,直線l的參數(shù)方程為 .試在曲線C上求一點(diǎn)M,使它到直線l的距離最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx+x2 .
(Ⅰ)若函數(shù)g(x)=f(x)﹣ax在其定義域內(nèi)為增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,若a>1,h(x)=e3x﹣3aexx∈[0,ln2],求h(x)的極小值;
(Ⅲ)設(shè)F(x)=2f(x)﹣3x2﹣kx(k∈R),若函數(shù)F(x)存在兩個(gè)零點(diǎn)m,n(0<m<n),且2x0=m+n.問(wèn):函數(shù)F(x)在點(diǎn)(x0 , F(x0))處的切線能否平行于x軸?若能,求出該切線方程;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com