A. | (1,2) | B. | (-∞,1)∪(2,+∞) | C. | (0,1) | D. | (-∞,0)∪(1,+∞) |
分析 把原函數(shù)整理成關(guān)于a的一次函數(shù),利用一次函數(shù)的單調(diào)性求得函數(shù)在[-1,1]上的最大值,令最大值小于0,可得x的范圍.
解答 解:函數(shù)可整理為f(x)=(x2-x+1)a+1-x
∵對(duì)于a∈[-1,1]時(shí)恒有f(x)<0,
∴(x2-x+1)a+1-x<0恒成立.
令g(a)=(x2-2x+1)a+1-x
則函數(shù)g(a)在區(qū)間[-1,1]上的最大值小于0,
∵g(a)為一次函數(shù),且一次項(xiàng)系數(shù)x2-2x+1>0,
∴函數(shù)g(a)在區(qū)間[-1,1]上單調(diào)遞增,
∴g(a)max=g(1)=x2-2x+1+1-x=x2-3x+2<0
解得1<x<2
故選:A
點(diǎn)評(píng) 本題主要考查了利用函數(shù)的單調(diào)性求函數(shù)最大值.在把恒成立問題轉(zhuǎn)化為求函數(shù)的最值問題的過程中,體現(xiàn)了轉(zhuǎn)化的思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $π+\sqrt{3}π$ | B. | $\frac{4}{3}π$ | C. | $2π+\frac{{2\sqrt{3}}}{3}π$ | D. | $π+\frac{{\sqrt{3}}}{3}π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若a≥b,則a2≥b2”的逆否命題為“若a2≤b2,則a≤b” | |
B. | “x=1”是“x2-3x+2=0”的必要不充分條件 | |
C. | 若p∧q為假命題,則p,q均為假命題 | |
D. | 對(duì)于命題p:?x∈R,x2+x+1>0,則¬p:?x0∈R,x02+x0+1≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$ | B. | $({-\frac{{\sqrt{3}}}{6},\frac{{\sqrt{3}}}{6}})$ | C. | $({-\frac{{2\sqrt{2}}}{3},\frac{{2\sqrt{2}}}{3}})$ | D. | $({-\frac{{2\sqrt{3}}}{3},\frac{{2\sqrt{3}}}{3}})$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com