7.實數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{x≤1}\\{y≥a}\end{array}\right.$,若μ=2x-y的最小值為-4,則實數(shù)a等于( 。
A.-4B.-3C.-2D.6

分析 由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x≤1}\\{y≥a}\end{array}\right.$作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{y=a}\\{x-y+1=0}\end{array}\right.$,解得:A(a-1,a),
化目標函數(shù)μ=2x-y為y=2x-μ,
由圖可知,當直線y=2x-μ過A時,直線在y軸上的截距最大,μ有最小值為:2(a-1)-a=-4,
即a=-2.
故選:C.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結合的解題思想方法,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.已知p:|x|≤2,q:0≤x≤2,則p是q的( 。l件.
A.充要B.充分不必要
C.必要不充分D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{x-2y+2≥0}\end{array}\right.$,且z=$\frac{y}{x-a}$僅在點A(-1,$\frac{1}{2}$)處取得最大值,則實數(shù)a的取值范圍為(  )
A.[-2,-1)B.(-∞,-1)C.(-2,-1)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=4,AB=2.
(1)證明:平面PAD⊥平面PCD;
(2)若F為PC上一點,滿足BF⊥AC,求二面角F-AB-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若兩條直線ax+2y-1=0與3x-6y-1=0垂直,則a的值為( 。
A.4B.-4C.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.一個直三棱柱的三視圖如圖所示,則該三棱柱的體積為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=|2x+3|+|2x-1|.
(Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若關于x的不等式f(x)≤|3m+1|有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知數(shù)列{an}的前n項和為Sn,若${S_n}={n^2}$,數(shù)列$\left\{{\frac{2}{{{a_n}{a_{n+1}}}}}\right\}$的前n項和Tn=( 。
A.$\frac{n}{2n+1}$B.$\frac{2n+2}{2n+1}$C.$\frac{2n}{2n+1}$D.$\frac{2n}{2n-1}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設集合A={x∈Z|x2≤4},B={x|x>-1},則A∩B=( 。
A.{0,1}B.{-1,0}C.{-1,0,1}D.{0,1,2}

查看答案和解析>>

同步練習冊答案