a,b,c∈R+,且滿足a+b+c=1,則的最小值為   
【答案】分析:由柯西定理得 (a+b+c)()≥=1.由此能求出的最小值.
解答:解:∵a,b,c∈R+
且滿足a+b+c=1,
∴由柯西定理得
(a+b+c)(
=1.
當(dāng)且僅當(dāng)a=b=c=時取的最小值.
故答案為:1.
點評:本題考查一般形式的柯西不等式,解題時要認(rèn)真審題,注意取最小值時等號成立的條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3-x2+bx+2(a,b,c∈R)且(a≠0)在區(qū)間(-∞,0)上都是增函數(shù),在區(qū)間(0,4)上是減函數(shù).
(Ⅰ)求b的值;
(Ⅱ)求a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c和一次函數(shù)g(x)=-bx,其中a,b,c∈R.且滿足a>b>c,f(1)=0.
(Ⅰ)證明:當(dāng)a=3、b=2時函數(shù)f(x)與g(x)的圖象交于不同的兩點A,B.
(Ⅱ)若函數(shù)F(x)=f(x)-g(x)在[2,3]上的最小值是9,最大值為21,試求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(不等式選講選做題) 已知a,b,c∈R,且a+b+c=2,a2+2b2+3c2=4,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c∈R,且a>b則下列式子正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R,且a≠0),當(dāng)x∈[-3,1]時,有f(x)≤0;當(dāng)x∈(-∞,-3)∪(1,+∞)時,有(x)>0,且f(2)=5.
(1)求f(x)的解析式;
(2)當(dāng)x∈[1,3]時,函數(shù)f(x)的圖象始終在函數(shù)g(x)=mx-7的圖象上方,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案