分析 (Ⅰ)求出函數(shù)f(x)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的方程,求出函數(shù)的單調(diào)區(qū)間和極值即可;
(Ⅱ)求出函數(shù)f(x)的最小值,通過討論a的范圍,判斷g(x)的單調(diào)性,從而確定a的范圍即可.
解答 解:(Ⅰ)∵f(x)的定義域是(0,1)∪(1,+∞),
∴$f'(x)=\frac{{2xlnkx-{x^2}•\frac{1}{x}}}{{2{{ln}^2}kx}}=\frac{{x({2lnkx-1})}}{{2{{ln}^2}kx}}$.
由已知$f'({\sqrt{e}})=0$得k=1,
∴$f(x)=\frac{x^2}{2lnx}$
從而f'(x)、f(x)隨x的變化如下表
x | (0,1) | $({1\;,\;\sqrt{e}})$ | $\sqrt{e}$ | $({\sqrt{e}\;,\;+∞})$ |
f'(x) | - | - | 0 | + |
f(x) | ↘ | ↘ | 極小 | ↗ |
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 3 | C. | -3 | D. | $\frac{15}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
井號I | 1 | 2 | 3 | 4 | 5 | 6 |
坐標(x,y)(km) | (2,30) | (4,40) | (5,60) | (6,50) | (8,70) | (1,y) |
鉆探深度(km) | 2 | 4 | 5 | 6 | 8 | 10 |
出油量(L) | 40 | 70 | 110 | 90 | 160 | 205 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com