【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,拋物線的方程為

(1)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,求的極坐標(biāo)方程;

(2)直線的參數(shù)方程是為參數(shù)),交于兩點(diǎn), ,求的斜率.

【答案】(1);(2) 1或-1.

【解析】試題分析:(1)拋物線的方程可利用公式化成極坐標(biāo)方程;(2)由直線的參數(shù)方程求出直線的極坐標(biāo)方程,再將的極坐標(biāo)方程代入的極坐標(biāo)方程,根據(jù)即可求出直線的斜率.

試題解析:(1)由可得,

拋物線的極坐標(biāo)方程;

(2)在(1)中建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為,

設(shè)所對(duì)應(yīng)的極徑分別為,將的極坐標(biāo)方程代入的極坐標(biāo)方程得

,

(否則,直線與拋物線沒(méi)有兩個(gè)公共點(diǎn))

于是

,

,

所以的斜率為1或-1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線),焦點(diǎn)為,直線交拋物線,兩點(diǎn),的中點(diǎn),且

(1)求拋物線的方程;

(2)若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0,b∈R,函數(shù)f(x)=4ax2﹣2bx﹣a+b,x∈[0,1].
(1)當(dāng)a=b=2時(shí),求函數(shù)f(x)的最大值;
(2)證明:函數(shù)f(x)的最大值|2a﹣b|+a;
(3)證明:f(x)+|2a﹣b|+a≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),隨機(jī)抽取了6個(gè)試銷售數(shù)據(jù),得到第i個(gè)銷售單價(jià)xi(單位:元)與銷售yi(單位:件)的數(shù)據(jù)資料,算得
(1)求回歸直線方程 ;
(2)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤(rùn)=銷售收入﹣成本) 附:回歸直線方程 中, = , = ,其中 , 是樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(不等式選講)

已知函數(shù)

(1)若,解不等式;

(2)若不等式在R上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線x2﹣2y2=2的左、右兩個(gè)焦點(diǎn)為F1、F2 , 動(dòng)點(diǎn)P滿足|PF1|+|PF2|=4.
(1)求動(dòng)點(diǎn)P的軌跡E的方程;
(2)設(shè)過(guò)F2且不垂直于坐標(biāo)軸的動(dòng)直線l交軌跡E于A,B兩點(diǎn),問(wèn):線段OF2上是否存在一點(diǎn)D,使得以DA,DB為鄰邊的平行四邊形為菱形?作出判斷并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)=lnx+ax2﹣(a+2)x在 處取得極大值,則正數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 通項(xiàng)公式為
(1)計(jì)算f(1),f(2),f(3)的值;
(2)比較f(n)與1的大小,并用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直三棱柱ABCA1B1C1中,ABAC,EBC的中點(diǎn),求證:

(Ⅰ)平面AB1E⊥平面B1BCC1;

(Ⅱ)A1C//平面AB1E

查看答案和解析>>

同步練習(xí)冊(cè)答案