銷售甲,乙兩種商品所得利潤分別為P(萬元)和Q(萬元),它們與投入資金t(萬元)的關(guān)系有經(jīng)驗(yàn)公式P=
1
5
t
,Q=
3
5
t
.今將3萬元資金投入經(jīng)營甲,乙兩種商品,其中對甲種商品投資x萬元
(1)試建立總利潤y(萬元)關(guān)于x的函數(shù)表達(dá)式
(2)求x為多少時(shí),總利潤y最大?并寫出最大利潤.
分析:(1)對甲種商品投資x(萬元),對乙種商品投資(3-x)(萬元),根據(jù)經(jīng)驗(yàn)公式可得甲、乙兩種商品的總利潤y(萬元)關(guān)于x的函數(shù)表達(dá)式;
(2)(2)首先要對(1)的函數(shù)分析,設(shè)
3-x
=m,然后根據(jù)一元二次方程的求最值方法求解.
解答:解:(1)根據(jù)題意,對甲種商品投資x(萬元),對乙種商品投資(3-x)(萬元).
根據(jù)經(jīng)驗(yàn)公式可得y=
1
5
x+
3
5
3-x
,x∈[0,3].
(2)設(shè)
3-x
=m,
則m≥0且x=3-m2y=
1
5
x+
3
5
3-x
=
1
5
(3-m2)+
3
5
m
=-
1
5
(m2-3m-3)=-
1
5
(m-
3
2
2+
21
20

所以當(dāng)m=
3
2
即:
3-x
=
3
2

也就是x=
3
4
萬元時(shí),
總利潤最大,ymax=
21
20
萬元
故應(yīng)甲種商品投資
3
4
萬元,對乙種商品投資
9
4
萬元時(shí),
總利潤最大,最大值為
21
20
萬元.
點(diǎn)評:本題重點(diǎn)考查函數(shù)模型的構(gòu)建,考查學(xué)生分析解決問題的能力,考查配方法求函數(shù)的最值,體現(xiàn)用數(shù)學(xué)知識解決實(shí)際問題,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有甲、乙兩種商品,經(jīng)營銷售這兩種商品所能獲得的利潤依次是P(萬元)和Q(萬元),它們與投入資金x(萬元)的關(guān)系有經(jīng)驗(yàn)公式:P=
x
5
,Q=
3
5
x
.今有3萬元資金投入經(jīng)營甲、乙兩種商品,為獲得最大利潤,對甲、乙兩種商品的資金投入分別應(yīng)為多少?能獲得最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

銷售甲、乙兩種商品所得利潤分別是y1、y2萬元,它們與投入資金x萬元的關(guān)系分別為y1=m
x+1
+a
,y2=bx,(其中m,a,b都為常數(shù)),函數(shù)y1,y2對應(yīng)的曲線C1、C2如圖所示.
(1)求函數(shù)y1、y2的解析式;
(2)若該商場一共投資4萬元經(jīng)銷甲、乙兩種商品,求該商場所獲利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有甲、乙兩種商品,經(jīng)營銷售這兩種商品所能獲得的利潤依次為Q1萬元和Q2萬元,它們與投入資金的關(guān)系是Q1=0.4x,Q2=-0.2x2+1.6x,今有10萬元資金投入經(jīng)營甲、乙兩種商品,為獲得最大利潤,對甲、乙兩種商品的資金投入應(yīng)分別為多少?并求最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

銷售甲、乙兩種商品所得利潤分別是y1、y2萬元,它們與投入資金x萬元的關(guān)系分別為數(shù)學(xué)公式,y2=bx,(其中m,a,b都為常數(shù)),函數(shù)y1,y2對應(yīng)的曲線C1、C2如圖所示.
(1)求函數(shù)y1、y2的解析式;
(2)若該商場一共投資4萬元經(jīng)銷甲、乙兩種商品,求該商場所獲利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省泰州市高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

銷售甲、乙兩種商品所得利潤分別是y1、y2萬元,它們與投入資金x萬元的關(guān)系分別為,y2=bx,(其中m,a,b都為常數(shù)),函數(shù)y1,y2對應(yīng)的曲線C1、C2如圖所示.
(1)求函數(shù)y1、y2的解析式;
(2)若該商場一共投資4萬元經(jīng)銷甲、乙兩種商品,求該商場所獲利潤的最大值.

查看答案和解析>>

同步練習(xí)冊答案