由y=-x2與直線y=2x-3圍成的圖形的面積是

[  ]

A.

B.

C.

D.9

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:江蘇省射陽中學2011-2012學年高二下學期期末考試數(shù)學文科試題 題型:022

下列說法:

①當x>0且x≠1時,有lnx+≥2;

②函數(shù)y=ax的圖象可以由函數(shù)y=2ax(其中a>0且a≠1)平移得到;

③若對x∈R,有f(x-1)=-f(x),則f(x)的周期為2;

④“若x2+x-6≥0,x≥2”的逆否命題為真命題;

⑤函數(shù)y=f(1+x)與函數(shù)y=f(1-x)的圖象關于直線x=1對稱.

其中正確的命題的序號________.

查看答案和解析>>

科目:高中數(shù)學 來源:陜西省2009屆高三教學質(zhì)量檢測模擬試題(一)、數(shù)學 題型:044

已知二次函數(shù)滿足以下條件:

①圖像關于直線x=對稱;②f(1)=0;③其圖像可由y=x2-1平移得到.

(Ⅰ)求y=f(x)表達式;

(Ⅱ)若數(shù)列{an},{bn}對任意的實數(shù)x都滿足f(x)·g(x)+anx+bn=xn+1(n∈N*),其中g(x)是定義在實數(shù)集R上的一個函數(shù),求數(shù)列{an},{bn}的通項公式.

(Ⅲ)設圓Cn:(x-an)2+(y-bn)2,(n∈N*),若圓Cn與圓Cn+1外切,且{rn}是各項都為正數(shù)的等比數(shù)列,求數(shù)列{rn}的公比q的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2008年普通高等學校招生全國統(tǒng)一考試(上海卷)、數(shù)學 題型:044

已知z是實系數(shù)方程x2+2bx+c=0的虛根,記它在直角坐標平面上的對應點為Pz(Rez,Imz).

(1)若(b,c)在直線2x+y=0上,求證:Pz在圓C1:(x-1)2+y2=1上;

(2)給定圓C:(x-m)2+y2=r2(m、r∈R,r>0),則存在唯一的線段s滿足:①若Pz在圓C上,則(b,c)在線段s上;②若(b,c)是線段s上一點(非端點),則Pz在圓C上.寫出線段s的表達式,并說明理由;

(3)由(2)知線段s與圓C之間確定了一種對應關系,通過這種對應關系的研究,填寫下表(表中s1是(1)中圓C1的對應線段).

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆山西省晉商四校高二下學期聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題

已知橢圓的長軸長為,焦點是,點到直線的距離為,過點且傾斜角為銳角的直線與橢圓交于A、B兩點,使得.

(1)求橢圓的標準方程;           (2)求直線l的方程.

【解析】(1)中利用點F1到直線x=-的距離為可知-.得到a2=4而c=,∴b2=a2-c2=1.

得到橢圓的方程。(2)中,利用,設出點A(x1,y1)、B(x2,y2).,借助于向量公式再利用 A、B在橢圓+y2=1上, 得到坐標的值,然后求解得到直線方程。

解:(1)∵F1到直線x=-的距離為,∴-.

∴a2=4而c=,∴b2=a2-c2=1.

∵橢圓的焦點在x軸上,∴所求橢圓的方程為+y2=1.……4分

(2)設A(x1,y1)、B(x2,y2).由第(1)問知

,

……6分

∵A、B在橢圓+y2=1上,

……10分

∴l(xiāng)的斜率為.

∴l(xiāng)的方程為y=(x-),即x-y-=0.

 

查看答案和解析>>

同步練習冊答案